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Abstract

Designing high performance parallel applications is a challenging task. The
task becomes more difficult when these applications are on a multiprogrammed
multiprocessor or function in the real world and need to meet real-time constraints.
From the application's perspective these environments are unpredictable: under
multiprogramming it is possible to be switched out at any time, and in the real
world unexpected events can occur. Our thesis is that by sharing information
across the traditional system-application interface we can achieve high perfor-
mance in parallel applications both in the presence of multiprogramming and
when meeting real-time constraints. The implemented techniques we describe not
only perform better, but are simpler than those that would be required without
such interaction. The contributions of this thesis, which are stated explicitly later,
lie both in the mechanisms and techniques themselves and in the paradigm and
implementation of the runtime environment that allows the mechanisms to exist.

The mechanisms and techniques described throughout this thesis respond and
adapt to unpredictable environments, whether caused by an unanticipated real-
world event or an unexpected context switch. Synchronization is needed in almost
all parallel programs, and, if oblivious to scheduler decisions, can have deleteri-
ous effects on application performance. We describe a set of scheduler-conscious
and preemption-safe synchronization techniques that address the possibility of
preemption on multiprogrammed multiprocessor machines. Mechanisms used in
responding to the real world need to be flexible and adaptive. We describe a set
of such mechanisms that allow real-time programs to adapt effectively to a chang-
ing and unpredictable world. We also describe a model for structuring the entire
system (application, runtime, and kernel) in real-world environments.
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1 Introduction

Designing high-performance parallel applications is a challenging task. The task
becomes more difficult when these applications are run on a multiprogrammed
multiprocessor or when they function in the real world and need to meet real-time
constraints. Researchers have used advances in hardware technology to design
larger and more complex real-time applications. Larger applications require new
integration techniques while more complex applications require a restructuring of
the underlying system support. We examine the system design issues of support-
ing SPARTAs (Soft PArallel Real-Time Applications). From the application's
perspective these parallel or multiprogrammed environments are unpredictable:
under multiprogramming it is possible to be switched out at any time, and in
the real world unexpected events can occur. Our thesis is that by sharing in-
formation across the traditional system-application interface we can achieve high
performance in parallel applications both in the presence of multiprogramming and
when meeting real-time constraints. The implemented techniques we describe not
only perform better, but are simpler than those that would be required without
such interaction. The contributions of this thesis, which are stated explicitly later,
lie both in the mechanisms and techniques themselves and in the paradigm and
implementation of the runtime environment that allows the mechanisms to exist.

The mechanisms and techniques described throughout this thesis respond and
adapt to unpredictable environments, whether caused by an unanticipated real-
world event or an unexpected context switch. Synchronization is needed in almost
all parallel programs, and, if oblivious to scheduler decisions, can have deleteri-
ous effects on application performance. We describe a set of scheduler-conscious
and preemption-safe synchronization techniques that address the possibility of
preemption on multiprogrammed multiprocessor machines. Mechanisms used in
responding to the real world need to be flexible and adaptive. We describe a
set of such mechanisms that allows real-time programs to adapt effectively to a
changing and unpredictable world. We also describe a model for structuring the
entire system (application, runtime, and kernel) in real-world environments.
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1.1 Background

When a program is confronted with unexpected events it is important for it
to be able to adapt. If the program cannot adapt, sometimes an error in program
correctness will result. More often though, the program's performance will suf-
fer. This thesis will address two primary sources of unpredictability: programs
interacting with each other and programs interacting with the real world.

1.1.1 Programs Interacting With the Real World

In the real world unexpected events can occur. To respond to these events a
program needs to be able to adapt. Even in periods when unexpected events do
not occur there will still be times of lower demand and times of higher demand.
When responding to unexpected events, it may be necessary to adapt to achieve
program correctness, whereas the inability to adapt to periods of differing demand
will most likely impact performance. SPARTAs that unable to adapt to varying
resource demand will not perform as well as those that can.

A lot of previous work in real-time systems focused on hard real-time issues
inherently producing approaches that are not adaptive. The need for adaptive
techniques becomes clear when analyzing the requirements and demands of soft
real-time systems. Some research groups did focus on soft real-time application
and designed adaptive applications [Hal90]. However, their techniques often only
applied to the particular application they examined; the intent of our work is
to design general adaptive mechanisms. To address the issue of the static and
immutable schedules, researchers proposed the idea of slack stealing [TL94] and
anytime algorithms [LLS+91; WHR90]. The difficulties with previous approaches
is that they either do not generalize adequately or do not go far enough in pro-
viding adaptive mechanisms for the emerging class of soft real-time applications
that are the focus of our work.

1.1.2 Programs Interacting With Other Programs

When applications share a machine it becomes necessary to multiplex the pro-
cessors amongst the different applications. This will result in an application's
process being context-switched out. If the application does not take into account
scheduler actions performance degradation will occur when processes attempt to
synchronize with their sleeping peers. This performance loss is especially pro-
nounced on scalable multiprocessors. For locks the performance loss is due to
other processes spinning while a preempted peer is in the critical section, and for
barriers the performance loss occurs when a process spins at a barrier while other
peer processes are preempted and could be making better use of its processor.
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Some research groups have addressed the issue of preemption in the critical
section. They either avoid it [ELS88; MSLM91] or recover once it occurs [ABLL92;
Bla90]. These techniques go a long ways towards addressing the difficulties en-
countered by locks on small machines, but are not sufficient for scalable locks.
For barrier based programs untimely preemption is not an issue. Rather, what is
needed is the ability to yield a process to a peer and more importantly to know
when to yield a processor. While Black [Bla90] provides a mechanism for suggest-
ing to the kernel to run a peer process, this is not enough as a process also needs
to know if it should perform the yield. We address these barrier issues for both
bus-based multiprocessors and for scalable multiprocessor where a reconfigurable
tree barrier is required.

1.2 Problems

In obtaining high-performance parallel applications that interact with the real
world or that use synchronization on multiprogrammed multiprocessors a number
of difficulties arise. The thesis proposes solutions to the following problems:

Programs Interacting with the Real World:

1. There exists a gap between the existing real-time kernel mechanisms and
the functionality desired by a SPARTA programmer.

(a) Hard real-time systems have not been designed with adaptability needed
to support the newly evolving soft real-time applications.

(b) The tools and systems support for parallel applications have been struc-
tured around scientific applications and are not well suited for SPARTA
environments.

2. It is not clear what the correct interface to robotics, real-time artificial
intelligence, vision, etc. should be, and what functionality should be in the
operating system level and what in the application level.

3. Real-time scheduling mechanisms are not well suited for SPARTAs.

Programs Interacting with Other Programs:

4. Multiprogramming can have a deleterious effect on parallel applications writ-
ten in a scheduler oblivious manner, even programs well-designed for dedi-
cated machines. Under a scheduler-oblivious multiprogramming model, an
application's processes are context switched out unexpectedly and without
the application's other peer processes aware that it happened.
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5. Scalable synchronization algorithms based on distributed data structures are
particularly susceptible to multiprogramming effects.

1.3 Programs Interacting With the Real World

There exists a gap between the existing real-time kernel mechanisms and the
functionality desired by a SPARTA (Soft PArallel Real-Time Application) pro-
grammer. In order for programs to function in the real world they have to meet
real-time constraints and be prepared to handle unexpected events. Depending
on the specifications for an application, it may be classified as a soft or a hard
real-time application. Loosely, hard real-time applications are characterized by
requiring absolute guarantees and often exist in environments where the price of
failure is high (e.g., airplane autopilot), while soft real-time applications have the
flexibility to occasionally take longer than projected (e.g., mail delivery robot). In
the last decade there has been a shift in the type and complexity of applications
designed for the real-world: systems are needed that allow soft and hard real-time
components to coexist.

Many real-world applications contain both hard and soft real-time compo-
nents. There has been considerable work on hard real-time system design such
as [SR87] as well as work for parallel [HH89] and distributed [SGB87] environ-
ments. Target applications for hard real-time systems include airplane autopilot
or nuclear power plant control. New complex, parallel soft real-time applica-
tions have been generating considerable interest [Hal90; DJ86; Sha87; DHK+88;
KP93]. Some example applications are: autonomous navigation, reconnaissance,
and surveillance; operator-in-the-loop simulation; and teams of autonomous co-
operating vehicles.

Designing a SPARTA is challenging, since in its full generality it calls for dy-
namic decision making about resource allocation, scheduling, choice of methods,
handling reflexive or reactive behavior smoothly within a context of planned or
intended actions, and a host of other issues not typically encountered either in off-
line or hard real-time applications. SPARTAs need different system support than
either the large data-crunching scientific programs or the smaller less-structured
applications currently being investigated in parallel environments. Further, sup-
porting such applications was beyond the intended scope of previous real-time
kernels because other more fundamental or lower level issues needed to be ad-
dressed first.

It is not clear what the correct interface to robotics, real-time artificial intel-
ligence, vision, etc. should be, and what functionality should be in the operating
system level and what in the application level. The real-time community has ac-
knowledged the need to explore issues raised by SPARTAs. Stankovic [Sta92] enu-
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merates a number of key issues that we have addressed in the design of Ephor1 our
runtime environment designed to support SPARTAs. Among them are "what are
the correct interfaces to robotics, RTAI, Vision, ... etc." and "what functionality
should be in the OS level and what in the application level."

The problem is illustrated in Figure 1.1. There is a large conceptual and mech-
anism gap between a typical SPARTA and a typical real-time operating system.
As indicated in Figure 1.1, the conceptual gap occurs when the kernel doesn't
understand high-level constructs, such as a goal, and a mechanism gap occurs
when the kernel can not reasonably allocate needed resources and has to return
a failure. Therefore, an integral part of supporting SPARTA design will be pro-
viding an intermediate runtime layer. In addition to proposing an appropriate
model for SPARTA design, we describe our experiences building Ephor, including
what motivated its conception and development, and the resulting separation of
responsibilities both easing the design of SPARTAs and improving their perfor-
mance.

Our runtime, Ephor, interacts with SPARTAs, maintaining hard real-time
behavior when needed while providing graceful degradation in cases in which
performance is important but not critical to the success of the application. Our
intermediate runtime layer is built on a hard real-time substrate providing the
additional functionality needed by SPARTAs. The runtime reduces the replicated
work of system monitoring and dynamic decision-making that is common between
applications.

Initially, the effort needed to develop a general run-time package, such as
Ephor, versus simply incorporating the needed portions into an application, may
appear prohibitive. However, an analogy to threads of control indicates this may
not be so. Historically, threads of control were thought of simply as support for
co-routining under direct user control. However, through time, many other is-
sues with thread management have arisen. A similar situation applies with tasks,
methods, or even planners in SPARTAs. Synchronization between tasks may be a
significant issue, as might be the interleaving of tasks, or running one based on an
exception generated by another, etc. Although it is conceivable these issues could
be handled at the application level much the same way parallel thread manage-
ment could be, there are compelling reasons for studying the systems aspects of
such general capabilities.

Real-time scheduling mechanisms are not well suited for SPARTAs. Hard real-
time systems have not been designed to support the newly evolving soft real-
time applications. In particular, they lack the flexibility needed to adjust to a
complex and dynamic environment. The reason is that they must provide absolute
predictability and guaranteed scheduling. As part of designing Ephor we have
examined scheduling, a core area of real-time research. We have invented and

1Ephor was the name of the council of five in ancient Greece that effectively ran Sparta
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Figure 1.1: Without a runtime environment (like Ephor) there exists a conceptual
(kernel does not know high-level constructs such as goals) and a mechanism (ker-
nel cannot reasonably allocate needed resources and has to return a failure) gap
between the application-level abstractions and kernel-level mechanisms is difficult
to bridge.

analyzed new scheduling paradigms and incorporated them into Ephor. These
scheduling mechanisms are particularly suited for SPARTA environments. Here
again we have achieved better performance by matching the specifications of the
scheduling mechanisms to the model of tasks requesting them. Two recurrent
themes throughout our work for real-world applications are the importance of
the ability for the system (runtime and kernel) to adapt to changing application
needs, and the benefit of widening the interface between the typical kernel and
application in a SPARTA environment to facilitate this desired flexibility.

1.4 Programs Interacting with Other Programs:
Synchronization and Multiprogramming

Multiprogramming can have a deleterious effect on parallel applications written
in a scheduler-oblivious manner, even programs well-designed for dedicated ma-
chines. Multiprogramming means that an application shares the machine with
one or more other applications. There are different multiprogramming models,
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but assuming a dynamic model (applications can come and go) the view of the
machine to a given application will change over time. Under a scheduler-oblivious
model, an application's processes are context switched out unexpectedly and without
the application's other peer processes being aware that it happened. Another multi-
programming model partitions the machine into smaller "machines" and doles out
those smaller "machines" to requesting applications. In the first model processes
are context switched to allow another application's process to run while in the
second model processes are context switched to allow another process within the
same application to run. In either case performance can suffer.

. In our experiments, we have found that algorithms that provide excellent per-
formance in the absence of multiprogramming may perform orders of magnitude
worse when multiprogramming is introduced. These results suggest the need for
scheduler-conscious synchronization techniques. Figure 1.2 shows the performance
of two programs, one modified to use our scheduler-conscious synchronization
techniques and the other not. Although the latter algorithm outperforms any
previous synchronization algorithm on a dedicated machine, the figure shows that
multiprogramming can have a disastrous effect on applications even well designed
for dedicated machines. Clearly, providing scheduler-conscious preemption-safe
mechanisms is important.

time '
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Figure 1.2: Queued mutex lock performance
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A fundamental question for a synchronization mechanism is whether a pro-
cess upon reaching a synchronization point should block (yield the processor to
another) or spin (repeatedly test the desired condition). Spinning makes sense
when the expected wait time of a synchronization operation is less than twice the
context switch time, or when the spinning processor has nothing else useful to do.
Otherwise it is better to block. Spinning in user-level code tends to work well
only if each process runs on a separate physical processor. If the total number of
processes in the system exceeds the number of processors, then some processors
will have to be multiprogrammed. The processes on a given processor may be
from different applications or, if the scheduler partitions the machine, from a sin-
gle application. In either case, conflicts between scheduling and synchronization
can seriously degrade performance when:

e a process is preempted while holding a lock,

e a process is preempted while waiting for a lock and then is handed the lock
while still preempted, or

* a process spins when some preempted process could be making better use
of the processor.

Scalable synchronization algorithms based on distributed data structures are
particularly susceptible to multiprogramming effects. Most synchronization algo-
rithms have been designed to run on a dedicated machine, with one applica-
tion process per processor, and can suffer serious performance degradation in the
presence of multiprogramming. Problems arise when running processes block or,
worse, busy-wait for action of a peer process that the scheduler has chosen not
to run. We show that these problems are particularly severe for scalable synchro-
nization algorithms based on distributed data structures. This is because those
data structures often impose a predetermined ordering on the expected progres-
sion through the synchronization mechanism, and the unexpected actions of the
scheduler causes significant additional problems because of this fixed ordering.

We describe and evaluate a set of algorithms that perform well in the presence
of multiprogramming while maintaining good performance on dedicated machines.
We consider both large and small machines, with a particular focus on scalabil-
ity, and examine mutual-exclusion locks, reader-writer locks, and barriers. The
algorithms we study fall into two classes: preemption-safe techniques that decide
whether to spin or block on the basis of heuristics, and scheduler-conscious tech-
niques that use information from the scheduler to drive more accurate decisions.
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1.5 Contributions

In this thesis we show that by sharing information across the kernel-application
boundary, effectively widening that interface, we achieve better performing tech-
niques and mechanisms with simpler implementation. Our contributions lie both
in the techniques and mechanisms as well as in the model for the interface.

There have been research groups in the past that have considered real-world
applications [Hal90] embodying some of the design qualities of Ephor but in an
application specific way. Other researchers [BS91] have looked at providing adap-
tive real-time systems. There has also been a tremendous amount of work on
scheduling for real-time systems, extending from early rate monotonic work [LL73]
to more recent multiprocessing work [BDW86]. Ephor incorporates some of the
past successful techniques and our new high performance techniques into a single
runtime package that works across applications. In addition to the useful new
techniques, we describe how to combine them in a general runtime environment
for SPARTAs.

Another aspect of information sharing is scheduler-conscious synchronization.
Research groups have shown how to avoid preempting a process that holds a test_
and-set lock [ELS88; MSLM91], or to recover from this preemption if it occurs
[ABLL92; Bla90]. Other groups have developed heuristics that allow a process
to guess whether it would be better to relinquish the processor, rather than spin,
while waiting for a lock [Ous82; KLMO91]. Our synchronization interface builds
on ideas from previous work with a few additional extensions. However, our
primary contributions are the techniques we develop that take advantage of this
interface to provide scheduler-conscious synchronization. Throughout the thesis
we show that by sharing information across the kernel-user interface we can ease
the design of synchronization algorithms and SPARTA mechanisms and improve
their performance.

To solve the problems presented in Section 1.2 this thesis provides the following
set of contributions:

Programs interacting with the real world:

1. Mechanisms to fill the gap between existing mechanisms and those desired
by a SPARTA programmer.

(a) A dynamic technique selection mechanism [WB93].

(b) A suite of mechanisms suitable for SPARTAs: dynamic parallel process
control, de-scheduling of all tasks linked to a goal, access functions for
sharing information, optional partitioning of soft and hard real-time
tasks, overdemand detection and recovery, and early termination of
tasks.
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2. A methodology for designing SPARTAs.

(a) An application independent methodology for incorporating mechanisms
into a SPARTA runtime environment [WB94].

(b) A set of recommendations for task design to SPARTA programmers [WB95].

3. A set of scheduling policies designed for SPARTA environments [WB96].

Programs interacting with other programs:

4. Scheduler-conscious synchronization techniques: a scheduler-conscious bar-
rier for small machines (in which a centralized data structure does not suffer
from undue contention, and in which processes can migrate between proces-
sors) [KW93; KWS94].

5. Scheduler-conscious synchronization techniques targeted for scalable ma-
chines.

(a) A preemption-safe ticket lock and scheduler-conscious queue lock, both
of which provide FIFO servicing of requests and scale well to large
machines [WKS94; KWS94].

(b) A fair, scalable, scheduler-conscious reader-writer lock (the non-scalable
version is trivial) [KWS94].

(c) A scheduler-conscious barrier for large machines that are partitioned
among applications, and on which processes migrate only when repar-
titioning occurs [WKS95; KWS94].

1.6 Roadmap

Chapter 2 starts by describing the difficulties in designing SPARTAs. We
present our shepherding application, which embodies characteristics of the real-
world applications studied in this thesis. From this discussion we show the im-
portance of designing adaptable applications. We then describe a set of recom-
mendations for SPARTA programmers to achieve better performing applications
(Problem and Contribution 2b from Sections 1.2 and 1.5). This sets the stage for
a description of the underlying support needed to implement these recommenda-
tions. With this we segue into the design of Ephor, our application independent
runtime environment for SPARTAs (Problem and Contribution 2a).

Since this thesis covers considerable ground, related work is discussed in each
chapter where appropriate. Also, results pertinent to the topics discussed are
presented on a chapter by chapter basis. Following this philosophy, Chapter 3
presents previous efforts to handle multiprogramming in multiprocessors and then
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presents our scheduler-conscious synchronization algorithms (Problem and Contri-
butions 4 and 5). Continuing in Chapter 4 we present a sampling of the real-time
scheduling work and then describe, analyze, and present results from our suite of
scheduling policies targeted at SPARTA environments (Problem and Contribution
3).

In Chapter 5 we describe the advantages of dynamic technique selection (Prob-
lem and Contribution la) and give results, both qualitative and quantitative,
indicating its benefits. In this chapter we also present the other mechanisms we
developed in Ephor (Problem and Contribution lb). The results from the schedul-
ing policies and dynamic technique selection and other techniques come primarily
from a shepherding simulator we have developed to provide us a representative
sample SPARTA. In Chapter 6 we describe our experiences putting everything
together and we describe the design of a real world shepherding application in
our robotics laboratory. We restate our contributions and provide concluding re-
marks in Chapter 7. We leave the reader with a host of possible future directions
to pursue based on the work we presented in the thesis.
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2 Ephor: A Runtime for
SPARTAs

Designing a SPARTA (Soft PArallel Real-Time Application) requires the combina-
tion of three different components that are difficult to construct even in isolation.
SPARTAs are parallel programs, real-world planners, and real-time programs com-
bined into one application. Each of these elements is a challenging problem in its
own right. With the added difficulty of effectively combining them, achieving a
well performing and correct SPARTA could be overwhelming without the help of
tools and guidelines to automate and constrain the process. In Chapters 4 and 5
we present in detail the specific mechanisms designed and implemented in Ephor.
In this chapter we describe a set of recommendations for implementing SPARTAs
and a methodology for designing underlying runtime and system support. The
goal is to provide the programmer with tools and methods that allow a SPARTA
to utilize a multiprocessor most effectively.

If a SPARTA programmer is oblivious to real-time issues when designing an
application, poor or incorrect behavior may result. Tension arises due to the
discrepancy between how a programmer wants to design an application (typically
not at the level of real-time considerations) and the requirements of planning
and acting in the real world. We have developed Ephor to support SPARTA
development and execution. Our goal is to remove resource (including time)
management decisions from the user so that the standard techniques available for
designing applications such as intelligent robotic applications can be applied to
SPARTAs.

In the first half of this chapter we focus on implementing effective planners'

in parallel real-world applications. Previously, designing a planner for a SPARTA
meant tracking resource allocation, timing tasks, and handling other concerns of
interacting in the real world. The combination of Ephor and our model of planning
in SPARTAs considerably simplifies design.

1 "Planning" refers to all forms of cognitive reasoning, problem-solving, and decision-making

techniques for deciding what to do next, from simple random choice through sophisticated
modern planners.
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A key principle that underlies our work that we leverage throughout our dis-
cussion is that in a dynamic real-world environment it is important to be able
to adapt. While this may be intuitive, its implications for planner (and runtime)
design are significant. The importance of adapting holds both for the action taken
by the application as well as how the application decides on that action. More
concretely, in later sections we discuss the advantages of having several planners
(with the same task) varying in resources consumed (and thus quality of result).
This diversity is useful because it allows an adaptive decision to be made during
execution when the application needs a particular task solved. In part, the princi-
ples for designing SPARTA planners are motivated by what tools and mechanisms
the underlying runtime environment and operating system can provide to the ap-
plication programmer. Creating a happy marriage between what can be supported
from the system's point of view, and what model the real-world programmer would
like, is important to successfully implement real-world applications.

Throughout, we use the specific application domain of shepherding to pro-
vide concrete examples of our principles, and to demonstrate their effectiveness.
The shepherding application domain is flexible and maps onto a large class of
real-world applications that involve uncertain actions, uncertain sensing, real-
time constraints and responsibilities, planning and replanning, dynamic resource
management, dynamic focus of attention, low-level reflexive behaviors, and par-
allel underlying hardware (e.g. purposive vision, autonomous vehicle control and
navigation). A real-world shepherding implementation, described in Chapter 6,
runs in our robotics laboratory [BB92][vKW94] (see Figure 2.1), but the results in
Section 2.4 are from a real-time simulator that allows greater flexibility in experi-
mentation. The implementation consists of self-propelled Lego vehicles ("sheep")
that move around the table ("field") in straight lines but random directions. An
overhead camera allows visual monitoring of the sheep's progress. Each sheep
moves at constant velocity until herded by the robot arm ("shepherd"), which
redirects it towards the center of the field. A second robot arm ("wolf") can en-
croach on the field and remove ("kill") sheep if not prevented. The shepherd has
a finite speed and can affect only one sheep at a time. The goal of the shepherd is
to keep as many sheep on the table as possible, and the more powerful the sheep
behavior-models and look-ahead, the better the results.

General approaches to designing SPARTAs are only now beginning to emerge,
and usually individual solutions do not generalize well. We believe this is a two
part problem. First, underlying runtime and system support (Ephor) is needed.
Secondly, the principles in designing effective planners for these types of applica-
tions must be understood. To better motivate the need for underlying runtime
support mechanisms discussed in chapters 4 and 5 we present a set of principles
for SPARTA planner design that yield a better structured application, simplify
design, and improve performance. We start by providing a model of SPARTAs
in Section 2.2. Section 2.3 lists and describes in detail the principles involved in
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Figure 2.1: The real-world shepherding application (camera overhead)

designing effective planners for SPARTAs. We then provide results demonstrat-
ing the effectiveness of the planner principles. After describing recommendations
for the application layer we present our model for complete SPARTA design. In
Section 2.5 we briefly review motivating factors and SPARTA properties. Sec-
tion 2.5.3 discusses the design problems for a SPARTA. Based on those difficulties
we demonstrate the need for a division of responsibilities split among three lay-
ers in a SPARTA. In Section 2.6 we outline the responsibilities of each layer and
provide arguments as to the benefits gained by such a layering. The last section
( 2.7) of this chapter describes the important aspects of our implementation of
Ephor.

2.1 Related Work

Stankovic [Sta92] has pointed out some shortcomings of existing real-time sys-
tems in supporting complex applications. Ephor addresses some of these concerns.
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Nirkhe and Pugh [NP91] have made clear that current real-time techniques pro-
vide a very limited environment, e.g. disallowing recursion, while loops, dynamic
memory allocation, concurrency, and synchronization. Their work attempts to al-
low the programmer to use these constructs by a method called partial evaluation.

Chodrow, et al [CJ91] have presented a method to monitor real-time systems
and suggested that this information could be used to adapt in a dynamic envi-
ronment. Haban and Shin [HS89] have used information obtained by monitoring
real-time systems to schedule tasks with random execution times. Other work
on monitoring real-time systems was performed by Tsai [TFC90]. Although this
work was for distributed systems, we foresee similar requirements in a parallel
environment.

Oliveira et al [OQC91] have shown how dynamically to choose and decompose
a task under a blackboard style architecture. They then, however, may reject a
task based on other requirements in the system. Smith and Setliff [SS91] have
shown how to automatically synthesize a real-time program from a description
of task-level timing constraints and functional and behavioral descriptions of the
processing for each task. However, the tasks are coarse-grained, and designing a
general-purpose program is impossible. Davis, et al [DPAB95] have also proposed
an architecture similar to the three teered structure we propose in the this section.
They also propose flexible scheduling mechanisms for the real-time domain.

Marsh et al [MSLM91] [MBL+92] developed the idea of first class user-level
threads, which are an example of improved system-application communication.
That work is at the operating system level, but some of its constructs are clearly
useful to applications (notification of impending preemption, for instance).

There has been an abundance of work both on scheduling in real-time systems
and on designing planners. Scheduling work such as [ZRS87] or [RSS90] would
be useful in our underlying hard real-time substrate, but is both too restrictive
and pessimistic (assumes worst-case behavior) for the run-time's scheduling of
techniques. Adaptive planning work such as [HHP92] or [GD92] is effective in
handling environmental factors. Our run-time allows sophisticated schedulers to
take into account internal system state.

2.2 A Model of SPARTAs

This section is devoted to discussing models for designing SPARTAs. We de-
scribe our model and its applicable domains. There are two disparate approaches
to designing real-world Al and robotic applications. A subsumption model [Bro87]
[Bro89] claims intelligent behavior will emerge from low-level reactive modules.
While our model includes reactive modules as part of its real-time component,
the allowance for time-constrained high-level reasoning places it in the second,
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more traditional camp. As in a modular architecture [Fod85], we assume differ-
ent, loosely coupled mechanisms for low-level reaction-perception and high-level
reasoning.

Real-World Layer Responsibilities Layer Division Characteristics
Respond to environment Executive Level agent determines next action, search
Generate goals executive instructs lower levels

Application Layer Provide goal solving structure Intermediate Level corrections to actions(servoing)
interpret high level

Lowest Level survival actions, sensing, manipulating
Remain domain independent Interface to shared data structure, mechanisms,

Runtime Layer (Ephor) Use program structure representation Application system information to application
Provide mechanisms to the application Interface to real- monitor underlying system, schedule
Monitor the underlying system time substrate tasks
Provide basic real-time properties

Real-Time Substrate Make more information available
(e.g. resource allocation)

Figure 2.2: The three layers in the design of a real-world application

We augment the cognitive-reactive dichotomy with an intermediate, run-time
layer (Figure 2.2). All the application levels reside above the runtime layer and
real-time substrate. The application interacts only with Ephor and not directly
with the substrate. At the lowest [application] level are [hard] real-time periodic or
aperiodic (environment responsive) tasks. These tasks generally require the same
set of resources for execution to execution, and run for predicatable amounts of
time.

The intermediate [application] layer serves several functions. Among them, it
"catches the mistakes" of the lower level and "interprets the meaning" of the higher
layer. The former involves servoing, adjusting sensors and manipulators to ensure
the intended action is actually carried out by the lower level (e.g. servo robot arm
to sheep). The latter involves parsing a high-level description into components
(implementable code and functions) that can be understood and executed by the
lower level (e.g. determine robot arm instructions to herd sheep "5").

The highest or executive level consists of planning, reasoning, information
gathering and processing, decision analysis, etc.. With a traditional run-time and
underlying operating system, the most significant differences between applications
occur at the executive level. Unfortunately it is this level that is most task-
dependent and has the fewest standard formalisms. Researchers have approached
this aspect of SPARTAs from different angles. Both [GD92] and [HHP92] describe
planners effective in handling varying environmental factors. Hoogeboom and
Halang [HH92] propose a more general approach suggesting that "In anticipation
of a deadline at which some task must be fulfilled, it should be possible to choose
from different program segments the one that maintains optimum performance."
We concur.

A goal in our work, and implicit in the planner specifications, is the desire
to design a general architecture rather than just one for a specific application.
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While there are accounts of specific applications [BT94] that have clear design
principles and correct behavior, it is difficult to extract useful code from these
programs to help design another SPARTA. Some other work that has looked at
dynamic tradeoff decisions is Schwuttke and Gasser's [SG92] dynamic trade-off
evaluation algorithm that decide which data to monitor in a spacecraft. Durfee
[Dur90] suggests a more general method of supporting individual cooperating
components. Other prominent work in this area of developing general mechanisms
for supporting SPARTAs is by Gopinath and Schwan [GS89] who suggest objects
that can move along a continuum of resource use and describe mechanisms for
scheduling these objects in a distributed system.

2.3 Planner Design

2.3.1 Background

Let a task be something the application wishes to accomplish (e.g., save sheep)
and a technique be a method or algorithm for accomplishing a task (e.g., plan-
ner A). Figure 2.3 illustrates the model of the program structure for a SPARTA.
Throughout a program's execution it will need to execute many tasks and fre-
quently will need to execute the same task repeatedly. If each task has only a
single, sequential, fixed technique to solve it, then there will be no flexibility in
choosing a technique for solving a task and thus the program will have sacrificed
an entire dimension of adaptability (it can only choose different tasks indicating
a different course of action).

task

Ltechnique technique .. ° technique

tsubask . subtask

Figure 2.3: Program structure

Interacting with the real world implies coping with the unknown and the uncer-
tain. Tasks may be generated in regards to unexpected environmental stimuli. As
a specific example from our real-world shepherding application, consider the entry
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of a wolf into the field; a high priority task ("kill wolf") must be executed. Some
tasks may take longer or shorter than expected because of a change in the envi-
ronment or because of varying amounts of available resources (if while executing
the "find next sheep to save" task on seven processors, six of them are preempted
for other tasks, this task will take considerably longer to execute than originally
expected). An unpredictable environment can also cause additional tasks to be
needed while no longer requiring the results of others. For example, if while in the
middle of executing the "save sheep task", the robot arm is allocated to killing
a wolf, there is no reason to continue to execute the "save sheep task" since the
robot arm will not be available, instead the processor(s) could be freed and given
to another task. Clearly, the internal state of a SPARTA application, run-time,
and operating system will be highly variable over time. To make efficient use of
resources the application must cooperate with the underlying runtime to allow
the whole system to adapt dynamically to varying conditions. Using worst case
analysis to pre-configure the system is too inefficient [PABS91][SP94].

With our model, the SPARTA programmer can still conceptualize a program
in terms of tasks that need to be executed and techniques for implementing those
tasks. The programmer does not need to spend effort tracking resource alloca-
tion. The only difference between previous models for off-line applications and
the model described by our planner principles for SPARTAs is the emphasis on
specifying several ways of executing a given task. Of course, to take advantage
of this new model, underlying support is required (see [WB93][WB96]), and the
ability to inform the underlying support about the tasks and techniques. We
have developed a simple scheme that allows the programmer to communicate a
SPARTA's program structure to the underlying runtime environment, which we
briefly describe in Section 2.4. We devote the rest of this section to discussing the
details and giving examples of our planner principles.

2.3.2 Designing a Suite of Planners

It is essential for SPARTAs to maintain as much flexibility as possible both
in their ability to choose different courses of action based on the environment
and their ability to have multiple ways (techniques) for determining a particular
course of action. Below we list (in order of increasing effectiveness as measured
by application performance) a set of principles for planner design. After the list
we describe each item in detail and provide examples. The more of the principles
that are followed when designing a SPARTA planner the better the program's
performance will be.

1. Provide techniques that can vary in completion time (e.g., familiar concept
of anytime algorithms [LLS+91]).
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2. Provide multiple techniques (to be present in Chapter 5) that:

a) use different resources (e.g., infrared sensor/binocular vision)

b) vary (significantly) in quantity of resources used (cpu time, etc.).

3. Provide parallel planners that:

a) use a "bag of tasks" (processor farm) model

b) use different resources

c) vary in quantity of resources used.

The intent of these recommendations is to provide flexibility of resource allo-
cation in as many dimensions as possible. The more flexibility designed at this
level the more adaptable the program will be to unforeseen events since the under-
lying runtime environment (Ephor) will be able dynamically to select from a more
diverse set of techniques and thus will more likely be able to find an appropriate
technique for a given situation.

2.3.3 Description of Planner Principles

Following the outlined planner principles yields an adaptable program that
allows the runtime to adjust to unexpected events and thus achieve increased
performance. For each principle above we provide a detailed description and give
an example from the shepherding domain described in the introduction.

1) Provide techniques that can vary in completion time

A method for meeting the challenge of time variability is to design a planner
that can move along a continuum of completion times as suggested by Gopinath
and Schwan [GS89]. Such a technique is similar to the motivation behind anytime
algorithms or imprecise computations [LLS+91] in which after a certain minimum
time the program's result improves until a final completion time. These methods
allow the underlying system dynamically to allocate the maximum amount of time
available to the task while still allowing for early termination if processor cycles
are needed by other tasks.

An example from our shepherding application is the vision processing task of
determining the centroid of each (circularly marked) sheep. A quick approxima-
tion of the centroid may be found by scanning a horizontal and then vertical line
(see Chapter 6 [vKW94]). After this initial phase we have a reasonable centroid.
Continuing by searching every pixel and using a weighted mean to determine the
centroid will provide more accurate results, and given time, would be preferred.

2a) Provide multiple techniques that use different resources to achieve
the same task
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Ideally, these techniques would have non-intersecting resources, but techniques
using different but not unique sets are still useful. During execution, when the
high-level task implemented by these different techniques needs to be run, it will
still be able to be executed even if a resource from one technique is allocated to
some other task. The runtime can automatically choose to run the other technique
that does not require the allocated resource.

As a specific example consider a mobile robot that has two techniques it can
use to find the distance to a wall. It has an infrared sensor that may provide a
fast response and a pair of binocular cameras it can also use. If both resources
are free when it needs to execute the get-distance-to-wall task, then it prefers to
use the infrared sensor because it is faster. However, if the high-level executive
decides it is time to obtain the distance to the wall when the infrared sensors are
being used to avoid an object, the runtime can still execute the task by running
the technique that uses binocular vision.

2b) Provide multiple techniques that vary in quantity of resources
used

These techniques will differ in the amount of resources they use and conse-
quently the quality of the result they produce. The most straightforward example
is the amount of cpu time consumed. Anytime algorithms capture this notion and
are supported by Ephor, but even more significant differences yield greater adapt-
ability, for example: emergency or reflexive 0(1) algorithms, heuristic O(n 2 r 3 )

algorithms, or brute force search 0 (2n) algorithms. It is however most impor-
tant to design techniques within constant factors of the expected time available
for this task. Having techniques that vary widely from almost no time to lots of
time is useful, but under normal situations the time available for a task is likely
to be in a semi-predictable range, and providing alternatives to the runtime in
that range will help increase performance. This dimension of flexibility allows the
runtime dynamically to select the best technique based on the internal load on the
SPARTA's resources. There may be periods of time when the application desires
many tasks to be executed simultaneously and other periods of relative inactivity.
We have found a diversity of planners provides the best overall behavior for a
given task, because during quiet periods a higher quality technique can be run
and during periods of high demand a simple technique can still be run (as opposed
to being unable to run any technique).

For example, in the shepherding application we have implemented a simple
planner that just looks for the first sheep it finds moving away from the center
and computes the intercept to save it. We also have implemented another planner
varying in the amount of lookahead performed. We implemented a depth n search
(where n is the number of sheep), but in practice it never has enough time to
run for n > 4. Lookahead is useful because, for example, it may be the case
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that by letting the farthest sheep from the center go and moving to the other
side of the field two sheep can be saved. These different planners are extremely
valuable because they provide alternatives for Ephor to choose between. We
provide cursory results in Section 2.4 and perform a more thorough examination
in Chapter 5 that shows how, with a variety of planners, we can achieve better
behavior (more sheep confined) in the shepherding application.

3a Provide parallel planners that use a "bag of tasks" model

As mentioned earlier, SPARTAs contain parallel components that bring a new

level of complexity and a new set of issues to designing real-world applications.
However, this parallelism also brings new opportunities for adaptation. There are
many models of parallel computation (e.g. data parallelism is natural in low-level
vision). Programming a technique to have a fixed number of subtasks on a fixed
set of processors is counterproductive since it does not allow for any adapting.
Instead, a model of parallelism is needed that can easily and quickly change in
light of varying and unpredicted environmental stimuli. Our experiments show
that if the application is programmed with a "bag of tasks" model, the runtime
can provide considerably better performance. In a "bag of tasks" model, work is
divided up into reasonable-sized pieces and placed in a central repository. Each
process removes a piece from the bag, processes it, and possibly updates shared
information with the result. Examples of this model of parallelism are the Uniform
System [TC88] or the Problem-Heap Paradigm [Cok9l; MNS87]. This paradigm
provides tremendous flexibility since the runtime can choose to run any number
of processes to work on this technique.

An example from the shepherding application is a parallel planner we designed.
This planner looks at the next n (for our experiment it was four) possible sheep
saves in order to determine the best next move. Another way to cast the planning
problem is to look at all permutations of the sheep in the field and count the
number of sheep still confined at the end of the sequence of sheep saves and
the amount of time taken to make those saves. This representation nicely fits
the "bag of tasks" model since now we can place into the "bag" a set of all the
possible permutations. Each (identical) process pulls a permutation out of the
bag, computes the information above, and updates a central location (holding
the best permutation seen so far) if it determines it has found the best option so
far. We give results from applying the "bag of tasks" model to the shepherding
domain in Section 2.4.
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3 Provide parallel planners that: b) use different resources c) vary
in quantity of resources used.

Design parallel planners that either use distinct resources or that vary greatly
in the quantity of resources consumed. The arguments and benefits are analogous
to those we discussed for sequential planners in 2a and 2b.

2.4 Supporting Results

While we present a more detailed examination of Ephor mechanisms in Chap-
ter 5, in this section we provide a few specific results to demonstrate the effec-
tiveness of the planner principles described in the last section. The evaluation
is accomplished by using the shepherding simulator (a real-time simulator of the
shepherding application), Ephor (our runtime environment), and real-time primi-
tives from IRIX (the operating system of our 12 processor SGI Challenge). First,
we briefly explain the application-Ephor interface, which is how the application
informs Ephor of its tasks, techniques, and subtasks. Then, we provide results
demonstrating improved performance using adaptable planner principles. We con-
centrate on two specific principles. We show that application behavior improves
when multiple techniques accomplishing the same task are available to the runtime
and when a parallel planner is used that can adapt the number of processes.

At startup, the application informs Ephor of its tasks, the different techniques
it has for executing those tasks, and the specific functions (subtasks) that imple-
ment the techniques. Upon task creation, the program can specify that the task is
periodic, in which case Ephor will automatically place it on the scheduling queue
at the appropriate time. If the task is not periodic then the application simply
informs Ephor (via a library call) when it wants that task to run (effectively the
same as executing a function call). Once Ephor knows about the application's
tasks, techniques, and subtasks, it dynamically selects the most appropriate tech-
nique when a given task has been requested for execution.

As a simple example from the shepherding application, Figure 2.4 shows how
the vision processing task is defined. The first call ephor-create.task returns
a handle to the vision processing task. If this task was not periodic, e.g., a task
called in response to an environmental stimulus, then ephor-periodic would be
False, and the program would call ephor-run-task(vision-proc-task) when it
wanted this task run. Given the vision-proc-task handle, the application may now
create as many different techniques for this task as it can find ways to perform
it. For each technique the application creates all the subtasks needed to complete
that technique. The subtasks are pointers to actual C functions that Ephor will
run once it selects the technique to use to execute a given task.
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vision-proc-task = ephor-create-task(ephor-periodic,

True, ephorpriority, 1,

ephor-task-name, "vision proc",
ephor-rate, 16666, NULL); /* 60 HZ */

temptech = ephor-create-technique(visionproc task,
ephor-cpu-time, 6000, NULL);

vision-proc-id = ephor-createtask(visionproctask,
temp-tech, ephor-imp-function,

vision-processor, NULL);

Figure 2.4: Application-Ephor interface

2.4.1 Evaluation of a Suite of Techniques

The first planner principle we evaluate is the usefulness of generating different
techniques for accomplishing the same task. Here we will examine the perfor-
mance of two planners (planner A and B) - a more thorough analysis of these
tradeoffs may be found in Chapter 5. Both of these planners figure out the next
sheep to save but differ in how long they take to run and how many sheep are con-
tained (in steady state) when running on an unloaded cpu. To guarantee accurate
measurement (no competing load) for this experiment, we dedicate one processor
to the planner function. A sheep can travel from the center to the edge of the
table in 10 seconds and the shepherd can travel this distance in about 1/3 of a
second.

Planner A computes a list of all the sheep moving away from the table center
that the shepherd has time to reach, sorted by distance from the center. It then
determines the best order for saving the next four sheep: this requires future
prediction of sheep movements. The best sequence is the one maximizing the
number of sheep saved. Among the orderings that save equal number of sheep,
preference is given to the ordering taking less time. The first sheep in the sequence
is saved and the planner starts over. Planner A performs the best under no load
but takes the longer time to run (about one second). Planner B is a reactive
planner (no look-ahead strategy) that simply tries to save the sheep farthest from
the center. It runs much faster than A (about 8 milliseconds) but does not perform
nearly as well under no load: if by letting the farthest sheep go, it is possible to
save the next two and otherwise not, A will save the two sheep while B will save
only one.

To compare the different planners under simulated conditions of parallel activ-
ity in other parts of the SPARTA, a controlled load was placed on the processor
that the planner was running on. Since we were using a multiprocessor we could
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vary the load experienced by the planner process without affecting any of the

other processes in the system. We also had tight control over how much load was
experienced on the processor running the planners. The line graph of Figure 2.5

(on the left) gives performance for a set of fixed loads (the load does not vary
throughout the entire execution - an unrealistic model since in a real application
tasks will come and go, but it allows us to see the comparative benefits of each of

the planners), while the bar chart of Figure 2.6 gives average performance when
the cpu load varies during the run (like actual program execution).

The experiment (Figures 2.5 and 2.6) demonstrates the effect of a high load.
Recall that B runs about 40 times faster than A. Planner A is expected to out-
perform B with no load, but under increased load planner A might not complete
its calculations in time, thus planner B is expected to outperform A under high
load. The loads are plotted on a logarithmic scale: load type II is twice as much
background load as load type I and half as much as load type III. Indeed
there is a dramatic decrease in performance of planner A under higher loads while
planner B remains fairly constant. In a fixed load environment the run-time can
select the better of the two planners, thus achieving the best performance in all
cases. In the second half of the experiment the load varied through time. Half
the time there was no load and half the time there was load. When there was a

load it was divided evenly (by thirds) amongst the different load types. Figure 2.6
represents how A, B, and the run-time mixture perform under varying load; best
performance occurs when Ephor dynamically selects the planner to suit the (cur-
rently) available resources. It is clear that dynamically selecting between planners
improves application performance.

2.4.2 Evaluating Adaptable Parallel Planners
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Figure 2.7: Fixed versus adaptable parallel planners

The second planner principle we evaluate is the "bag of tasks" (see 3a) model
for parallel planner design. As we have mentioned, a key aspect of performing
well in the real world is being able to adapt. This adaptability applies both to
the runtime and the application. Our principle of using a "bag of tasks" model
is motivated by the fact that it provides considerable flexibility when considering
the amount of processing power to allocate to a planner.

In this experiment we again assume a model of varying load as would be
observed in a real application. The parallel planner has been written using a
"bag of tasks" model. The planner looks four saves into the future. The possible
permutations for the next four sheep saves are placed into a central queue where
they are removed by as many processes as the runtime has decided to invoke in
this particular task instantiation. This planner is qualitatively different from the
planners discussed in Section 2.4.1 and the environment is quantitatively different,
so the results should not be compared.

The results appear in Figure 2.7. The load of the application allowed for
between 1 and 7 processors to be available to the save-sheep task at different points
throughout its execution. The "fixed" bar represents the application's behavior
assuming it could not adapt and adjust to use the extra processors available at
various points throughout the execution. The variable bar represents when Ephor
was allowed dynamically to allocate more processors for the parallel planner when
they were available (see Chapter 4 for details on the dynamic parallel process
control mechanism). We vary the response time expected from the planner by
varying the rate the sheep move. Notice that when the response demands placed
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on the application increase, it becomes more important for the planner to have
been designed allowing for differing number of processes to be used. This figure
illustrates the benefit of using a flexible parallel planner. When the sheep are
moving around quickly, the adaptable parallel planner can confine over three times
as many sheep as the fixed (one process) parallel planner. The important aspect
of this discussion is not that parallel planners (versus sequential ones) can improve
the performance of applications, rather, that in real-world applications we need
parallel planners that can dynamically vary the number of processors they use.
Equally important, we need a runtime such as Ephor, that can support this desired
behavior.

This graph represents the interesting part of the state space for the save-
sheep planner. If the sheep move very slowly (1-5 units/sec) then either planner
will have enough time to do something reasonable, and similarly if the sheep
are moving extremely quickly (greater than 60 units/sec) neither planner will
have enough time to do anything. Achieving perfect speedup when running on
seven processors (versus one) would allow the planner to run seven times as fast.
This does not however, translate into a seven-fold improvement in application
behavior. In fact there may be some programs that do not benefit or benefit
very little from decreased running time. However, many real-world applications
will be able to benefit from being able to perform more computation in less time.
Exploiting the parallel dimension of programming a SPARTA can substantially
improve application behavior.

2.5 Runtime Support

In the last two sections we argued and provided results showing that by build-
ing flexibility into the application layer better performing SPARTAs could be
achieved. This flexibility was achieved by (among other possibilities) having mul-
tiple techniques for solving a given task and by having parallel planners that could
take advantage of additional processors. While it is conceivable that building such
capability into the application would be possible, there are many benefits to de-
signing a general purpose runtime, such as Ephor, to provide the required support.
These benefits include elimination of replicated work across applications, better
performance through careful study of possible mechanisms, and improved modu-
larity. In the rest of this chapter we will further motivate the need for a runtime
between the application layer and the kernel, provide a model for such a runtime,
and describe some of the pertinent implementation issues involved in constructing
the runtime.
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2.5.1 Motivating Factors

Our research work in this area developed from a desire to provide systems
support for a class of real-world and Al applications. We devised the shepherd-
ing problem to embody many of the properties of the applications we wished to
support. A brief overview of shepherding was provided earlier in this chapter and
a complete description appears in Chapter 6. Briefly, sheep (small vehicles) move
around in a field (table) and a shepherd (robot arm) tries to maximize the number
contained in the field. Before and during implementation we observed that there
were several mechanisms that would have been useful but were not provided by
current real-time systems such as concurrency control, dynamic technique selec-
tion, help in priority assignment, etc. As Stankovic [Sta92] notes, "Because of
these reasons many researchers believe that current kernel features provide no
direct support for executing difficult time problems, and would rather see more
sophisticated kernels..." A system that provided these features would be very
useful. Rather than including these features into the kernel and sacrificing ker-
nel predictability, we placed the additional functionality into Ephor, our runtime
environment. This allows the designer to use the real-time kernel most appropri-
ate for their environment. The application still receives the same functionality
(actually more) and we maintain a predictable kernel.

2.5.2 SPARTA Properties

In designing Ephor in conjunction with the shepherding application we wanted
to ensure the mechanisms developed for shepherding would be applicable to other
programs. To do so, we designed the shepherding application to have many of the
same properties as the soft real-time applications mentioned in the introduction.
These applications contain an element of search whereby the agent determines
the next course of action. Most are designed around a high-level executive in-
structing lower levels. The executive reasons using a model of the real world and
carries out actions in it. The world is governed by general principles, but is not
predictable. There is often an intermediate layer responsible for small corrections
to the requested action (servoing). Also, there is often a low-level layer whose
actions need to be carried out constantly and can occur "subconsciously", i.e.,
without intervention from the higher levels.

2.5.3 SPARTA Design Problems

. Under the standard taxonomy there is only an application and kernel. Any
operations or functions not performed by the kernel are the responsibility of the
application. While the application needs to respond to the environment, determine
the next course of action, and evaluate current progress, to perform reasonably it
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also needs to:

1. Monitor the load of the underlying processors. Often the application has
a choice of tasks to accomplish the same objective. Rather than submit
impractical tasks, if the application knew the amount of resources available,
it could quickly choose the appropriate task to submit.

2. Maintain a list of allocated resources. As in 1, a wiser task submission based
on task resource allocation yields better behavior.

3. Track execution times of tasks, especially highly variable ones. We have
found that locally the execution time of a task is fairly predictable, so know-
ing the last several execution times is useful (see Chapter 4).

4. Determine the correct interleaving of prioritized tasks.

It was our objective in designing Ephor to ensure these enumerated ideas could
be handled by the generalized runtime, thus removing a significant burden from
the SPARTA programmer.

2.5.4 Ephor Paradigm

Designing and implementing the shepherding application led us to the conclu-
sion that there is considerable functionality above the intended realm of real-time
kernels that an increasingly large class of real-time applications strongly desire.
It is best not to remove the predictability of the kernel since many critical appli-
cations depend on this property. However, there is a large class of applications
willing to relax the tight constraints to gain increased functionality. These soft
real-time applications will sacrifice predictability with or without a runtime. Fur-
ther, if Ephor's mechanisms are not desired for a portion of the application they
may be ignored causing no overhead to that portion. A runtime layer, such as
Ephor, will have a positive effect on SPARTA design. The only penalty if none of
Ephor's mechanisms are used (or used only very minimally) is the one processor
normally reserved to run it will be unavailable for other tasks. However this sce-
nario is unlikely as Ephor provides a wide range of mechanisms and any SPARTA
should be able to take advantage of a healthy set of mechanisms. In the next
section we describe the responsibilities of each layer under the Ephor paradigm.

2.6 Layer Responsibilities

By defining the responsibilities of each layer, we clearly define the obligations
of the SPARTA designer. More importantly, we can specify the interface to the
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Real-World Layer Responsibilities Layer Division Characteristics

Respond to environment agent determines next action, search
Generate goals executive instructs lower levels

Application Layer Provide goal solving structure Intermediate Level corrections to actions(servoing)
interpret high level

Lowest Level survival actions, sensing, manipulating

Remain domain independent Interface to shared data structure, mechanisms,

Runtime Layer (Ephor) Use program structure representation Application system information to application
Provide mechanisms to the application Interface to real- monitor underlying system, schedule
Monitor the underlying system time substrate tasks
Provide basic real-time properties

Real-Time Substrate Make more information available
(e.g. resource allocation)

Figure 2.8: The three layers in the design of a real-world application

runtime, treating it as a "black box" with respect to the SPARTA programmer. A
contribution and important part of our work is a clean separation of responsibilities
for each layer and a description of mechanisms provided by Ephor independent
of how they are coded. Thus, we not only have provided mechanisms, but a
methodology.

Figure 2.8 (repeated from Figure 2.2 for convenience) shows the three layers
in designing a SPARTA and underlying system. Information is shared across
the runtime-application boundary by the data access functions. For example,
ephor-get-task-time (my-task) will return the execution time for my-task. These
access functions provide information to flow both ways. The user application
can request information that Ephor has been gathering, or the application can
override a selection among different techniques by instructing Ephor to use the
specified one. The clean breakdown of information communication in Fig. 2.9 has
been achieved by dividing layer responsibilities as detailed below.

Program Structure Scheduling requests

Flow of control - goal requests Priority assignments

Application EhrKre

Summarized low-level information Scheduling information

Goal execution times and resource utilizations Resource allocation information

Figure 2.9: Layer information exchange

2.6.1 Application

The application layer is solely responsible for responding to the environment.
The application is responsible for communicating to the runtime the different tasks
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it will run throughout its execution, the different techniques it has for executing
the tasks, and the relative benefit (simply a linear order of preference) of each
technique. The application is responsible for determining the interaction of the
environment and tasks to produce the intended behavior. The application is
responsible for indicating when a new task needs to be executed in response to
an environmental stimulus, or as the result of a previously completed task. In
essence the application must provide the flow of control to produce the desired
program.

2.6.2 Runtime

The runtime receives the structure of the tasks the application will submit
throughout its execution via the initialization functions. As we mentioned in Sec-
tion 2.3, there can (should) be different techniques for each task. Each technique
may have one or more subtasks that actually implement the technique. The run-
time is responsible for determining the execution time of the different techniques
for executing the tasks. The application can explicitly provide the times (required
for worst case scheduling), or the runtime may dynamically gather them during
the program's execution. The latter method allows Ephor to adapt in a changing
environment. Ephor is responsible for determining and running the appropriate
items needed for completing a selected technique. In selecting the technique to
execute a requested task, Ephor needs to be aware of the program structure and
application and the internal state of the system. The runtime is therefore respon-
sible for interfacing to the underlying kernel to obtain the information it needs. It
is responsible for monitoring the following resources necessary to select dynami-
cally the best technique: processor load, expected available processors for running
parallel techniques, and other current resource allocation such as range sensors,
manipulators, or cameras. Ephor is responsible for maintaining a central location
where resource allocation information can be quickly and coherently obtained by
either Ephor or the application.

To provide a reasonably comprehensive runtime package we have implemented
many mechanisms in Ephor. They will be discussed in detail in Chapter 5, here
we give a list to provide an overview of Ephor's functionality:

1. Dynamically select technique based on internal system state.

2. Schedule tasks using derivative worst case or adaptive scheduling policies.

3. Dynamically control the placement and quantity of parallel processes.

4. De-schedule all running subtasks associated with a particular task.

5. Automatically time tasks and update their status block.
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6. Provide access functions to share information between the runtime and ap-
plication.

7. Detect and recover from overdemand.

8. Allow early termination of tasks.

9. Automatically allocate resources based on task priority.

10. Provide user-conscious synchronization.

In summary, Ephor is responsible for monitoring the underlying system, sum-
marizing the internal system information for the application layer, and dynami-
cally selecting the appropriate techniques to execute the requested tasks.

2.6.3 Kernel

We assume a hard real-time substrate. The kernel is expected to provide
fundamental real-time properties and mechanisms such as a predictable scheduling
policy, a real-time clock, guaranteed deadlines, task priorities, and other properties
typically associated with real-time kernels [Sta92]. The kernel is responsible for
handling interrupts, and allocating resources as directed by Ephor.

2.7 Implementation

There are three primary components to Ephor or any runtime layer that resides
between the application and the kernel. There is the interface to the application,
the interface to the kernel, and the code for implementing the functionality of
the runtime. In this section we describe the implementation of these portions
of Ephor, both to give a general feel for what would be required in a generic
runtime layer and to provide background for results based on Ephor presented in
Chapters 4 and 5.

Ephor needs to interface with the application layer. It needs to receive the
program structure (in terms of tasks, techniques, and their subtasks) and details
about that structure, e.g., worst case time for a task. It also makes available
information about the system to the application layer, e.g., most recent execution
time of a task. From the application's perspective, this information is accessed via
Ephor library functions. This approach was taken rather than providing direct
access to the data structure since it allows Ephor to prevent the application from
setting inappropriate values. It still allows asynchronous access to the data since
the function is actually run by the caller and Ephor does not respond directly to
the request.
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Ephor also needs to interface with the underlying kernel. Since we did not
desire the additional difficulties of modifying kernel code, our implementation of
the Ephor - kernel differs slightly from a production implementation and was
sufficient to test and demonstrate our ideas in a prototype. At initialization
Ephor creates one process for every task that may be executed throughout the
application's existence. This is a common technique employed in real-time systems
to avoid the highly variable time of creating a process and reduce it to the more
predictable job of performing a context switch (IRIX guarantees a 200 Ps bound
for this). Since Ephor does not have direct control of the processes a footer and
header is inserted into each task. Ephor and the process then cooperate to achieve
the desired behavior. For example, if Ephor chose to run a task on processor 7,
it sets the migrate-processor flag and indicates processor 7. This flag is checked
in the header of each task and if high then the task calls an IRIX primitive to
migrate to the desired processor.

There are four actions taken in the header 2 of a task. The first action is to
block on a semaphore and wait for the user-level scheduler in Ephor to unblock
the task. The header also checks a flag to see if Ephor has migrated or changed
the priority of the task. If so, it calls the appropriate IRIX primitive to execute
the action. Finally, the header starts the 21 ns resolution timer. The footer
of the task simply stops the timer and updates the time fields. The need for
the cooperation between Ephor and the process occurs because we did not make
kernel modifications. In a production system, the above items would be handled
by the kernel just before running a task. The task's model then is to sit in an
infinite loop starting with a P on a semaphore (that Ephor will V). Upon being
unblocked, the (header of the) task checks a migrate flag, sets the appropriate
priority, and starts a fine granularity clock. This is all hidden to the user; the
only responsibility of the user is to call ephor-begin-proc at the beginning of a
function for running a subtask, and call ephor-end-proc at the end.

The scheduler is described in greater detail in Chapter 4 and is based on a
parallel version of rate monotonic scheduling. The scheduler sorts the tasks first
by priority and then by period. It then starts with the first available processor
and proceeds through the list placing the tasks on to the lowest number number
possible while still meeting deadline requirements. The user level dispatcher for
Ephor executes the decisions made by the scheduler. It runs the tasks by perform-
ing a V (remember each task was blocked on a semaphore). Since Ephor tracks
the resources required by each task (cpu use and physical resource use) when the
task is run by the kernel it will not block waiting for physical resources nor will
it be rejected by the real-time kernel for lack of schedulability (it is still possible
to miss deadlines because of tasks over running). Thus, Ephor, the runtime layer,
is acting as the appropriate intermediary between the application layer and the

2 Section 6 contains the C code for the header and footer
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kernel, tracking resource allocation, and insuring good use of the machine.

2.8 Summary

In this chapter we provided a model of a SPARTA. We made a set of rec-
ommendations for how to design a SPARTA, which motivated the desire to have
underlying support. We motivated and described the benefit of having an inter-
mediate layer such as Ephor to provide this support, and briefly presented results
indicating the Ephor can improve performance in addition to providing the sup-
port desired by SPARTAs. In following chapters we will more carefully examine
each of the mechanisms in Ephor.
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3 Synchronization in the
Presence of
Multiprogramming

Multiprogramming occurs when there are more processes than processors. It can
be implemented in many different ways but the outcome is always that some
processes will have to share a CPU. This implies that they will not always be
executing. The process may be swapped out at the end of its quantum, or in
a real-time system when a higher priority task enters the system. Either way,
if the process is involved in a synchronization operation performance can suffer.
Ephor is designed to facilitate sharing of information both ways across the kernel -
application interface. Using the same philosophy of sharing information, we have
developed a library of synchronization mechanisms that combat the synchroniza-
tion difficulties encountered due to multiprogramming. Although not as extensive
as Ephor, the library provides a set of synchronization mechanisms that interact
with the kernel and provide improved performance.

In Chapter 5 we describe a planner that is part of the shepherding application.
The high performance of the planner relies on the fact that processes are able to
come and go throughout the execution of the shepherding application. The plan-
ner occasionally accesses a central data structure that requires a mutual exclusion
lock. In such an environment it is imperative to use a synchronization mech-
anism capable of handling the possibility of preemption. Other synchronization
researchers have also recognized the importance of combining the ability to handle
preemption and real-time. Both Craig [Cra93] and Takada and Sakamura [TS94]
have examined the issue of designing locks for real-time systems. In this chapter
we will describe many synchronization mechanisms, some that are suitable for
real-time systems. We apply our ideas of sharing information to develop these
synchronization mechanisms for both small and large scale machines.
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3.1 Introduction

Traditionally, synchronization algorithms have been designed to run on a ded-
icated machine, with one application process per processor, and can suffer serious
performance degradation in the presence of multiprogramming. Problems arise
when running processes block or, worse, busy-wait for action on the part of a pro-
cess that the scheduler has chosen not to run. We show that these problems are
particularly severe for scalable synchronization algorithms based on distributed
data structures. We then describe and evaluate a set of algorithms that perform
well in the presence of multiprogramming while maintaining good performance on
dedicated machines. We consider both large and small machines, with a particu-
lar focus on scalability, and examine mutual-exclusion locks, reader-writer locks,
and barriers. The algorithms we study fall into two classes: preemption-safe
techniques that decide whether to spin or block on the basis of heuristics, and
scheduler-conscious techniques that use information from the scheduler to drive
more accurate decisions. We show that while in some cases either method is suf-
ficient, in general, sharing information across the kernel-user interface both eases
the design of synchronization algorithms and improves their performance.

Mutual exclusion locks are very common in SPARTAs. Search algorithms,
planners, and blackboards are all used in SPARTAs and have central data struc-
tures that need to be protected. In Chapter 2 we describe a parallel planner that
is part of the shepherding and that requires a central lock. Any system employ-
ing the blackboard approach [EL75; EHRLR80] will also need mutual exclusion
locks. Although lock use in SPARTAs is most common, other forms of synchro-
nization are sometimes required. For example, potential field control methods
have been popular in trajectory planning and navigation control for a decade.
Computing these fields is done by SOR or Gauss-Seidel iterative computation.
More sophisticated methods such as boundary element analysis have been sug-
gested for real-time use, and have the same computational flavor. Particular
recent examples include Gans's work [Gan96] on vehicle following using potential
fields, as well as the robot navigation work by Grupen and Connolly [GCSB95;
CG93] on which Gans's work is based. In a SPARTA there are many tasks, and
although often the application has the whole machine, each task is preempted as
in a multiprogramming system to let other or higher priority tasks execute. It is
especially important in a real-time environment that scheduler-conscious synchro-
nization algorithms are used. They provide both the predictability and improved
performance needed in these environments.

One of the most basic questions for any synchronization mechanism is whether
a process that is unable to continue should spin-repeatedly testing the desired
condition-or block-yielding the processor to another, runnable process. Spin-
ning makes sense when the expected wait time of a synchronization operation is
less than twice the context switch time, or when the spinning processor has noth-
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ing else useful to do. Researchers have developed a wealth of busy-wait (spin-
ning) mechanisms, including mutual exclusion locks, reader-writer locks (which
allow concurrent access among readers, but guarantee exclusive access by writ-
ers), and barriers (which guarantee that no process continues past a given point
in a computation until all other processes have reached that point). Of particular
interest in recent years have been scalable synchronization algorithms, which em-
ploy backoff or distributed data structures to minimize contention [And90; GT90;
HFM88; KSU93; Lee90; Lub89; MLH94; MCS91a; MCS91b; MCS91c; SMC94;
YA93; YTL87].

Unfortunately, busy-waiting in user-level code tends to work well only if each
process runs on a separate physical processor. If the total number of processes
in the system exceeds the number of processors, them some processors will have
to be multiprogrammed. The unexpected nature of scheduling decisions cause
problems for synchronization algorithms and can seriously degrade performance
when:

9 a process is preempted while holding a lock,

e a process is preempted while waiting for a lock and then is handed the lock
while still preempted, or

• a process spins when some preempted process could be making better use
of the processor.

In our experiments, we have found that algorithms that provide excellent per-
formance in the absence of multiprogramming may perform orders of magnitude
worse when multiprogramming is introduced. These results suggest the need for
scheduler-conscious synchronization-techniques that share information with the
scheduler in order to avoid bad interactions.

Several research groups have addressed one or more aspects of scheduler-
conscious synchronization. Some have shown how to avoid preempting a process
that holds a testand-set lock, or to recover from this preemption if it occurs.
Others have developed heuristics that allow a process to guess whether it would
be better to relinquish the processor, rather than spin, while waiting for a lock.
We refer to these techniques as preemption-safe-with only a small amount of help
from the scheduler, they avoid spinning for unbounded periods for events that will
not happen.

In this chapter we provide a relatively comprehensive treatment of preemption-
safe synchronization and of scheduler-conscious techniques that exploit additional
information from the scheduler. We cover mutual exclusion locks, reader-writer
locks, and barriers, for both large and small machines. Our contributions include:
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" a preemption-safe ticket lock and scheduler-conscious queue lock, both of
which provide FIFO servicing of requests and scale well to large machines;

" a fair, scalable, scheduler-conscious reader-writer lock (the non-scalable ver-
sion is trivial);

" a scheduler-conscious barrier for small machines (in which a centralized data
structure does not suffer from undue contention, and in which processes can
migrate between processors); and

" a scheduler-conscious barrier for large machines that are partitioned among
applications, and on which processes migrate only when repartitioning.

Our preemption-safe locks employ a simple extension to the kernel-user inter-
face that allows a process, within limits, to control the points at which it may be
preempted. Our scheduler-conscious algorithms (both locks and barriers) employ
additional extensions that inform an application about the status of its processes
and the processors on which they run. Preemption-safe techniques employ heuris-
tics to guess this information.' The heuristics achieve acceptable performance in
certain cases, but in general we find that use of a wider kernel interface results in
cleaner code and better performance.

We assume the availability of special instructions that allow a process to read,
modify, and write a shared variable as a single atomic operation.2 Examples
include test-andset, fetch-and-increment, fetch-and-store, and compare-
and-swap, The atomic instructions used in our algorithms can all be emulated
efficiently by load-linked and store-conditional.

We emphasize-large machines not only because scalable algorithms are newer
and hence less studied, but also because scheduler-conscious synchronization is
inherently harder for scalable algorithms based on distributed data structures.
Scalable algorithms have difficulties because their deterministic ordering of pro-
cesses can conflict with the actions of the scheduler in a multiprogrammed system.
For example: a mutual exclusion lock may keep waiting processes in a FIFO queue,
either for the sake of fairness or to minimize contention. The algorithm's perfor-
mance is then vulnerable not only to preemption of the process in the critical

'The distinction between preemption-safe and scheduler-conscious algorithms is not sharp.
Scheduler Activations [ABLL92], for example, allow an application to completely and accurately
track the status of its processes and processors. It does not share information across the kernel-
user interface, but might nonetheless be classified as scheduler-conscious.

2Some multiprocessors, especially the larger ones, provide more sophisticated hardware sup-
port for synchronization. Examples include the queue-based locks of the Stanford Dash ma-
chine [LLG+92], the QOLB (queue-on-lock-bit) operation of the IEEE Scalable Coherent In-
terface [JLGS90], and the near-constant-time barriers of the Thinking Machines CM-5 and the
Cray Research T3D. It is not yet clear whether the advantages of such special operations over
simpler read-modify-write instructions are worth the implementation cost.
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section, but also to preemption of processes near the head of the waiting list-the
algorithm may give the lock to a process that is not running [ZLE91]. Similarly, a
barrier algorithm may keep processes in a tree, in order to replace O(n) serialized
operations on a counter with O(log n) operations on the longest path in the tree.
But then processes must execute their portions of the barrier algorithm in the
order imposed by the tree. If the processes on a given processor are scheduled in a
different order, and if they simply yield the processor when unable to proceed (as
opposed to waiting on a kernel-provided synchronization queue), then the sched-
uler may need to cycle through most of the ready list several times in order to
achieve a barrier [ML91].

The rest of the chapter is organized as follows. Section 3.2 discusses related
work. It explains in more detail why synchronization algorithms suffer under
multiprogramming, why scalable synchronization algorithms are particularly sus-
ceptible to multiprogramming effects, and why previous research does not fully
remedy the problem. Section 3.3 describes our kernel interface and compares it to
alternative approaches, such as process-to-process handshaking and experience-
based heuristics, that use a more conventional interface. Section 3.4 describes our
preemption-safe and scheduler-conscious algorithms. Section 3.5 describes our ex-
perimental environment and presents performance results. Conclusions appear in
Section 3.6.

3.2 Background

3.2.1 Preemption-Safe Small-Scale Locks

It is widely recognized that lock-based algorithms (i.e. mutual exclusion and
reader-writer locks) can suffer performance losses when a process is preempted
while in a critical section. Remaining processes cannot access the shared data
structure or protected resource until the preempted process releases the lock it is
holding.

Ousterhout [Ous82] introduced spin-then-block locks that attempt to minimize
the impact of preemption (or other sources of delay) in critical sections by having
a waiting process spin for a small amount of time and then, if unsuccessful, block.
Karlin et al. [KLMO91] present and evaluate a richer set of spin-then-block alter-
natives, including competitive techniques that adjust the spin time based on past
experience.' Their goal is to adapt to variability in the length of critical sections,
rather than to cope with preemption. Competitive spinning works best when the
behavior of a lock does not change rapidly with time, so that past behavior is an
appropriate indicator of future behavior.

3 A competitive algorithm is one whose worst-case performance is provably within a constant
factor of optimal worst-case performance.
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Zahorjan et al. [ZLE88; ZLE91] present a formal model of spin-wait times.

For lock-based applications in which all processes on a given processor belong
to the same application, they show that performance problems can be avoided
if the operating system simply partitions processes among processors and allows
the application to make intra-processor scheduling decisions (never preempting a
process with a lock).

Several groups have proposed extensions to the kernel/user interface that allow
a system to avoid adverse scheduler/lock interactions while still doing scheduling
in the kernel. The Scheduler Activation proposal of Anderson et al. [ABLL92] al-
lows a parallel application to recover from untimely preemption. When a processor
is taken away from an application, another processor in the same application is
given a software interrupt, informing it of the preemption. The second processor
can then perform a context switch to the preempted process if desired, e.g. to push
it through its critical section. In a similar vein, Black's work on Mach [Bla90] al-
lows a process to suggest to the scheduler that it be de-scheduled in favor of some
specific other process, e.g. the holder of a desired lock. Both of these proposals
assume that process migration is relatively cheap.

Rather than recover from untimely preemption, the Symunix system of Edler et
al. [ELS88] and the Psyche system of Marsh et al. [MSLM91] provide mechanisms
to avoid or prevent it. The Symunix scheduler allows a process to request that
it not be preempted during a critical section, and will honor that request, within
reason. The Psyche scheduler provides a "two-minute warning" that allows a
process to estimate whether it has enough time remaining in its quantum to
complete a critical section. If time is insufficient, the process can yield its processor
voluntarily, rather than start something that it may not be able to finish.

3.2.2 Scalable Locks

Centralized locks can create substantial amounts of contention for memory
and for the processor-memory interconnect. The key to good performance is to
minimize active sharing. One option is to use backoff techniques [And90; MCS91a]
in which a processor that attempts unsuccessfully to acquire a lock waits for a
period of time before trying again. The amount of time depends on the estimated
level of contention. Bounded exponential backoff works well for test-and-set
locks. Backoff proportional to the number of predecessors works well for ticket
locks.

A second option for scalable locks is to use distributed data structures to en-
sure that no two processes spin on the same location. The queue-based spin locks
of Anderson [And90] and of Graunke and Thakkar [GT90] minimize active shar-
ing on coherently-cached machines by arranging for every waiting processor to
spin on a different element of an array. Each element of the array lies in a sep-
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arate, dynamically-chosen cache line, which migrates to the spinning processor.
The queue-based spin lock of Mellor-Crummey and Scott [MCS91a] represents
its queue with a distributed linked list instead of an array. Each waiting proces-
sor uses a fetch-and-store operation to obtain the address of. the list element
(if any) associated with the previous holder of the lock. It then modifies that
list element to contain a pointer to its own element, on which it then spins.
Because it spins on a location of its own choosing, a process can arrange for
that location to lie in local memory even on machines without coherent caches.
Magnussen et al. [MLH94] have shown how to modify list-based queue locks to
minimize interprocessor communication on a coherently-cached machine. Oth-
ers have shown how to build queue-based scalable reader-writer locks[KSU93;
MCS91b].

In order to have every process spin on a separate variable, queue locks require
that processes acquire the lock in a deterministic (generally FIFO) order. If a
process is preempted while awaiting its turn to access a shared data structure,
processes later in the order cannot proceed even if the lock is released by the
original owner-the lock will be passed to the preempted process instead. This
problem was noted by Zahorjan et al. [ZLE91], but no solution was suggested.
In Section 3.4 we present two mutual exclusion locks and a reader-writer lock
that solve the problem by bypassing preempted processes in the queue and having
them retry for the lock when they resume execution.4

3.2.3 Alternative Approaches to Atomic Update

Alternatives to the use of preemption-safe or scheduler-conscious locks include
lock-free and wait-free data structures and remote object invocation.

Herlihy [Her9l; Her93] has led the development of lock-free and wait-free data
structures. The algorithms are designed in such a way as to guarantee both
atomicity and forward progress, despite arbitrary delays on the part of individual
processes. The key idea in most of these algorithms is to modify a copy of (a
portion of) the data structure, and then swap it for the original in one atomic
step (assuming the original has not been modified since the copy was created).
Tolerance of arbitrary delays means that lock-free and wait-free data structures
are immune to the performance effects of inopportune preemption. It also means
that they can tolerate some page faults and even certain kinds of hardware failure,
something none of the techniques in the previous section can do. Unfortunately,
the current state of the art in general-purpose lock-free and wait-free synchroniza-

4 The mutual exclusion locks originally appeared in a conference publication [WKS94].
Extensions for real-time systems have appeared in subsequent papers by others [Cra93;
TS94].
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tion techniques incurs substantial performance overhead, even when there is no
competition for access to the data structure.

A second way to avoid the use of locks is to create a manager process that
is responsible for all operations on the "shared" data structure, and to require
other processes to send messages to the manager. This sort of organization is
common in distributed systems. It can be cast as a natural interpretation of
monitors, or as function shipping [LHM+84; SG90] to a common destination. In
recent years, several machines have been developed that provide hardware support
for very fast invocation of functions on remote processors [KJA+93; NWD93].
Even on more conventional hardware, programming techniques such as active
messages [vCGS92] can make remote execution very fast. Because computation
is centralized and requests are processed serially, active messages provide implicit
synchronization. On the other hand, they do not permit concurrency and can
only be used when the manager is not a bottleneck.

3.2.4 Barriers

In some SPARTAs barriers form a key component structuring the parallel
computation. In this chapter we study the SOR application to evaluate the dif-
ferent barrier algorithms. In a typical SPARTA application, SOR is one way to
implement the potential field computation needed by Gans [Gan96] for vehicle
following control. Potential field algorithms have been used in many real-time
robot applications and hardware has been designed for them because they are so
computation intensive [GCSB95; CG93; CG95; RK89; TB91; Gan96]. More effi-
cient and sophisticated algorithms such as boundary element methods have the
same computational flavor. In real-time applications it is especially important
to use scheduler-conscious algorithms. The optimal bus-based algorithm we de-
scribe in this section is ideally suited for the real-time robotic applications based
on potential field computation because it allows the number or processes to vary
as recommended in Chapter 2 yet still guarantees that processes do not wait
(for peers) unnecessarily and always yield the processor rather than spin for an
unpredictable amount of time.

Barrier synchronization algorithms force processes to wait at a specified point
in the computation until all their peers have arrived at that same point. From
a scheduling point of view, the principal difference between locks and barriers is
that while the time between lock acquisition and release is generally bounded and
short (one critical section's worth of computation), the time between consecutive
barriers can be arbitrarily long. This means, for example, that while it may be
acceptable to disable preemption in a process that holds a lock, it is not acceptable
to do so in a process that must continue to execute in order to reach the next
barrier.
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Performance loss in barriers occurs when processes spin uselessly, waiting for
preempted peers. When a process on a multiprogrammed processor spins at a
barrier that has not yet been reached by some other process that could be mak-
ing use of the processor, it may waste as much as a quantum, reducing system
throughput and likely increasing the computation's critical path length.

Inspired by Karlin et al., we have developed small-scale, centralized barri-
ers in which a process attempts to guess whether it is running in a multipro-
grammed environment based on how long it had to wait during previous barrier
episodes [KW93]-if it thinks it is being multiprogrammed it blocks; otherwise it
spins. This heuristic ensures competitive performance, but a small extension to
the kernel/user interface allows a process to make an optimal decision, blocking
if and only if its processor could be given to another process that has not yet
reached the barrier. We present both the heuristics and the optimal technique in
Section 3.4.3.

Centralized barriers are generally based on counters, and pose two obstacles
to scalable performance on large machines. First, as with locks, simultaneous
attempts to access the counter can lead to unacceptable levels of contention. Sec-
ond, even in the absence of contention, serial counter updates imply an asymptotic
running time of O(p), which becomes unacceptable as the number of processors
p grows large. Several researchers have shown how to solve these problems by
building barriers based on log-depth tree- or FFT-like patterns of point-to-point
notifications among processes [AJ89; HFM88; Lee90; Lub89; MCS91a; MCS91c;
SMC94; YTL87]

Unfortunately, the deterministic notification patterns of scalable barriers may
require that processes run in a different order from the one chosen by the scheduler.
The problem is related to, but more severe than, the preemption-while-waiting
problem in FIFO locks. With a lock the scheduler may need to cycle through
the entire ready list before reaching the process that is able to make progress.
With a scalable busy-wait barrier, Markatos et al. have shown [ML91] that the
scheduler may need to cycle through the entire ready list a logarithmic number
of times (with a full quantum's worth of spinning between context switches) in
order to achieve the barrier. To avoid this problem, they suggest (without an
implementation) that blocking synchronization be used among the processes on
a given processor, with a scalable busy-wait barrier among processors. (Such
combination barriers were originally suggested by Axelrod [Axe86] to minimize
resource needs in barriers constructed from OS-provided locks.) The challenge for
a combination barrier is to communicate partition information from the scheduler
to the application, and to adapt to partitioning changes at run time. We present
such a barrier in the latter part of Section 3.4.3, enhanced with our optimal spin
versus block decision-making technique within each processor.
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3.3 Solution Structure

Because it is ultimately responsible for the fair allocation of resources among

competing applications, a kernel-level scheduler cannot in general afford. to accept

arbitrary directives from user-level code. Our algorithms assume that processes
can influence the behavior of the scheduler enough to avoid preemption in (short)

critical sections. In general though the scheduler remains in control of processor

allocation and the synchronization algorithms adapt to the current state of the
machine. In order to drive that adaptation, scheduler-conscious synchronization

algorithms require a mechanism to obtain information about the status of other
processes and about the processors available to the application. This information

may be (1) guessed via past experience using heuristics, (2) deduced through

interaction with other processes, e.g. via "handshaking", or (3) provided by the

kernel itself. In order, these options provide information of increasing accuracy
and thus result in simpler algorithms and better performance.

Experience-based heuristics can be successful to the extent that the present
and future resemble the past. They form the basis of both the competitive lock
algorithms of Karlin et al. [KLMO91], and of the competitive barriers we describe
at the beginning of Section 3.4.3. In the case of locks, the goal is to block if

the wait time will be longer than twice the context switch time, and to spin if
it will be shorter. For barriers, the goal is to block if there is another process
(not currently running) that could use the current processor to make progress

toward the barrier, and to spin otherwise. In both cases, the algorithm is able to

determine (by reading the clock) whether blocking or spinning would have been
a better policy at the most recent synchronization operation. If it finds it made

the wrong decision, it biases its decision in favor of the other alternative the next

time around. While this sort of adaptation has been shown to work better than

any static alternative, it induces overhead to maintain the statistics that allow
the decision to be made, and still makes the wrong decision some of the time.

Interaction with peer processes can provide better information about the peers'
status, provided that they respond promptly to inquiries (when running). In

Section 3.4.1 we use a "handshaking" technique in some of our mutual exclusion

algorithms. To hand a peer a lock, a process sets a flag on which the peer is
expected to be spinning, and then waits for the peer to set an acknowledgment

flag. If the acknowledgment does not appear within a certain amount of time,

the signaling process assumes that the peer is currently preempted. There is an
inherent inefficiency with this approach: if the signaling process doesn't wait long

enough, it will too often skip over a running peer by mistake. Any time it waits,
however, is lost to computation. All the signaling process really needs to know
is whether its peer is running or preempted, information readily available to the

scheduler.

We have found heuristics and handshaking to be expensive both in implemen-
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tation and execution cost. Algorithms based on kernel-provided information are

simpler and easier to design. They generally provide superior performance, in

part because the information from the kernel is more accurate than user-level es-

timates, and in part because the kernel can collect the information more efficiently

than user-level code can guess it.

Our kernel extensions are enumerated below. They build upon ideas proposed
by the Symunix project at NYU [ELS88]. Similar extensions could be based on

the kernel interfaces of Psyche [MSLM91] or Scheduler Activations [ABLL92]. 5

KE-1: For each process the kernel and user cooperate to maintain a vari-

able that represents the process's state and that can be manipulated under
certain rules by either. The variable has four possible values: preemptable,

preempted, self unpreemptable, and other-unpreemptable. Preemptable

indicates that the process is running, but that the kernel is free to pre-
empt it. Preempted indicates that the kernel has preempted the process.
Self iunpreemptable and other-unpreemptable indicate that the process
is running and should not be preempted. The kernel honors this request
whenever possible (see KE-2 below), deducting any time it adds to the end

of the current quantum from the beginning of the next.

The non-preemptable states indicate that the process is executing in a
critical section. Two distinct states are needed to accommodate certain race

conditions in queue-based mutual exclusion algorithms, in which a process
wishes to hand the lock to one of its peers and simultaneously make that
peer unpreemptable. Most changes to the state variable make sense only for

a particular previous value. For example, it makes no sense for user-level
code to change a state variable from preempted to anything else. Overall
system correctness does not depend on correct use of flags by applications,

but the performance of a particular application may suffer if it uses the
flags incorrectly. To make sure that changes happen only from appropriate
previous values, our algorithms generally modify state variables using an
atomic compare-and-store instruction. 6

'If we were building on top of Psyche, we would replace code in our algorithms that sets
the KE-1 variable to self unpreemptable with code that blocks if the "two-minute warning"
is in effect; we would delete code that resets KE-1 and blocks when KE-2 is set. Rather than
change another process's KE-1 variable to other-unpreemptable, we would inspect its warning
flag, and treat it as preempted if set. If we were building on top of Scheduler Activations, we
would have the user-level scheduler that receives notice of kernel-initiated preemptions treat the
KE-1 and KE-2 bits just as the kernel does in our Symunix-based proposal; it would need to
resume execution of any "unpreemptable" process. Alternatively, we could have the user-level
scheduler perform some synchronization algorithm-specific recovery, such as linking a process
out of a queue, but this introduces additional complexity, because with Scheduler Activations
the user-level scheduler itself can be preempted.

6 Compare-and-store(address ,old-val ,new-val) compares old-val to the contents of



46

e KE-2: To ensure fairness for applications, the kernel maintains an additional
per-process Boolean flag. This flag can be modified only by the kernel but
is readable in user mode. The kernel sets a process's flag to indicate that it
wanted to preempt the process but has honored a request (indicated via the
KE-1 variable) not to do so. To maintain ultimate control of the processor,
the kernel honors the request only when the KE-2 flag is not yet set; if the
flag is already set the kernel proceeds with the preemption. Upon exiting
a critical section (and setting the KE-1 variable back to preemptable), a
process should inspect the flag and yield the processor if the flag is set.
Yielding implicitly clears the flag. So long as critical sections are shorter
than the interval between the kernel's attempts at preemption, voluntarily
yielding the processor at the end of critical section in which the KE-2 flag
has been set ensures that preemption will not occur during a subsequent
critical section (barring page faults or other unusual sources of delay). 7

KE-3: The kernel also maintains a data structure, visible in user mode, that
contains information about the hardware partition on which the application
is running. Specifically, it contains the number of processors available in
the partition, the id of the current processor, the number and ids of pro-
cesses scheduled on each processor, and the generation count of the partition.
The generation count indicates the number of times that the partition has
changed in size since the application started running.

As noted above, extensions KE-1 and KE-2 are based in part on ideas de-
veloped for the Symunix kernel [ELS88]. We have introduced additional states,
and have made the state variable writable and readable by both user-level and
kernel-level code [WKS94]. Extension (KE-3) is a generalization of the interface
described in our work on small-scale scheduler-conscious barriers [KW93] and re-
sembles the "magic page" of information provided by the Psyche kernel [SLM90].
None of the extensions requires the kernel to do anything more often than once per
quantum, or to maintain information that it does not already have available in its
internal data structures. Furthermore, none requires the kernel or to access any
user level code or data structures, or to understand the particular synchronization
algorithm(s) being used by the application. We have run our experiments in user
space, but a kernel-level implementation of our ideas would not be hard to build,

address. If they are identical it stores new-val in address and returns true. Otherwise it
returns false.

7The possibility of page faults means that we cannot in general provide a guarantee against
inopportune preemption. The best we can hope to do in any of our algorithms is to minimize the
chance that such preemption will occur. To provide real guarantees (e.g. for a real time system),
the kernel would need to ensure that a process that sets its KE-1 variable will always be able
to execute some minimum number of instructions within a small bounded period of time.
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type context-block = record
state : (preempted, preemptable, unpreemptable-self, unpreemptable-other)
warning : Boolean

type partitionblock = record

num-processors, generation : integer

processesonprocessor : array [MAX-PROCESSORS] of integer

processor-ids : array [MAXPROCESSES] of integer

Figure 3.1: Pseudocode declarations for the kernel-application interface.

and could be expected to provide performance indistinguishable from that of our
experimental environment.

Our scalable barrier and queue locks arrange for processors to spin only on
local locations, on which no other processor spins. In most cases, we ensure that
those locations will be local not only on cache coherent machines (on which they
migrate to the spinning processor), but also on machines that lack hardware cache
coherence. On these latter, NUMA machines, variables on which processes spin
must be allocated statically in the local memory of the spinning processor; spins
are terminated by a single uncached remote write by another processor.

3.4 Algorithms

In this section we present preemption-safe and scheduler-conscious synchro-
nization algorithms that make use of heuristics, handshaking, and the extended
kernel interface described in Section 3.3. We consider mutual exclusion, reader-
writer locks, and barriers in turn. For the most part, we have chosen not to
replicate the pseudocode here; it appears in a technical report [KWS94].

The pseudocode in Figure 3.1 defines the interface between the kernel and
the application. The state field of a context-block is written by application
processes to indicate when they do not want to be preempted. The remaining
fields of both the context-block and partition-block records are writable only
by the kernel scheduler; they provide the application with information about
system state, to facilitate the design of efficient algorithms. Our mutual exclusion
and reader-writer locks use only the context-block records; the barriers use both.

All of our algorithms work well in a dynamic hardware-partitioned environ-
ment, an environment widely believed to provide the best combination of through-
put and fast turn-around for large-scale multiprocessors [CDD+91; LV90; TG89;
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ZM90]. 8 Except for the barriers, which require partition information, all of the
algorithms will also work well under ordinary time sharing. For a co-scheduled en-
vironment the additional complexity of preemption-safe and scheduler-conscious
algorithms is not necessary, but does not introduce any serious overhead.

3.4.1 Mutual Exclusion

The ability to have single access to a shared resource is required by almost all
parallel algorithms designed for SPARTAs. In applications ranging from parallel
searching [SS89] to blackboard models [EL75; EHRLR80], the most frequent form
of synchronization in a SPARTA is mutual exclusion. The parallel planner we
describe in Chapter 2 makes use of mutual exclusion to protect a data structure
of the best sheep save permutation. In real-time environments it is important
to act in a scheduler-conscious manner to reduce the unpredictability otherwise
encountered. To provide even greater predictability the queue locks we discuss
in this chapter can be modified as suggested by Craig [Cra93] and Takada and
Sakamura [TS94]. Providing scheduler-conscious mutual exclusion in SPARTAs
is important. In this section we discuss how to achieve scheduler-conscious locks.

Scalability in mutual exclusion algorithms can be achieved by arranging for
processes to spin on local locations in a distributed data structure, thereby elim-
inating interconnect and memory contention. Many researchers have developed
algorithms of this type [And90; GT90; MLH94; MCS91a; YA93]. The scalability
of centralized algorithms may also be improved by introducing appropriate forms
of backoff [And90; MCS91a]. The preemption-safe test-and-set locks of Psyche,
Symunix, or Scheduler Activations can be modified trivially to incorporate back-
off, though the work of Anderson and of Mellor-Crummey and Scott suggests that
the result will still produce more contention than a queue-based lock, degrading
network response for other processes and applications.

In this section we present two scheduler-conscious variants of the queue-based
lock of Mellor-Crummey and Scott. We also present a preemption-safe variant
of the ticket lock. This latter lock, while less trivial than a preemption-safe
test-and.set lock, is substantially simpler than a queue lock, and is likely to
provide acceptable performance for many environments. Unlike a test-and-set
lock, the ticket lock also provides fair FIFO ordering among currently-running
processes. Because they awaken processes in a deterministic order, both the queue
lock and the ticket lock must be modified to address not only preemption within
a critical section, but also preemption while waiting in line.

Our first variant of the queue lock uses the Symunix kernel interface: kernel
extension KE-2 and the preemptable and selfiunpreemptable values (only) of

8Note that multiprogramming is still an issue on a partitioned machine, since an application
with P processes may be forced to run in a partition with < P processors.
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KE-1. It uses handshaking to determine the status of other processes. When
releasing a lock, a process notifies its successor in the queue that it (the successor)
is now the holder of the lock. The successor must then acknowledge receipt of
the lock by setting another flag. If this acknowledgement is not received within a
fixed amount of time, the releasing process assumes that its successor is preempted,
rescinds its notification, and proceeds to the following process (throughout this
period the releasing process is unpreemptable).

Atomic fetch-and-store instructions are used to access the notification flag
in order to avoid a timing window that might otherwise occur if the successor
were to see its notification flag just before the releaser attempts to rescind it.
Without the atomic instruction it would be possible for the releaser to think that
the successor has failed and proceed to give the lock to another processor, and for
the successor to think that it has succeeded and proceed to the critical section,
thus violating mutual exclusion.

The handshaking version of the queue lock solves the preemption problem
but unfortunately adds significant overhead to the common case. Processes need
to interact several times when a lock is released. To address this limitation,
we have designed a scheduler-conscious algorithm that uses the full version of
kernel extension KE-1 and does not require handshaking. In this Smart Queue
algorithm the releasing process examines its successor's state variable, which is
kept up-to-date by the kernel. If the successor is preempted, the releaser proceeds
to other candidates later in the queue. If the successor is running, the releaser
uses an atomic compare-and-store instruction to change the successor's state
to other-unpreemptable. If the change is successful the lock is passed to the
successor. The need for compare-and-store stems from a potential race between
the releaser and the kernel: after determining that the successor is not preempted,
we must make it unpreemptable without giving the kernel an opportunity to
preempt it.

One of the problems with queue-based locks is high overhead in the absence of
contention. On small-scale machines and for low-contention locks a testand-set
with exponential backoff or ticket lock with proportional backoff may be prefer-
able [MCS91a]. (A hybrid lock that switches between test-and-set and a queue-
based lock, depending on observed contention, is another possibility [LA94].) With
appropriate backoff, test-and-set and ticket locks scale equally well. They use
different atomic instructions, making them usable on different machines. The
ticket lock also guarantees FIFO service, while the test-and-set lock admits the
possibility of starvation.

The basic idea of the ticket lock is reminiscent of the "please take a number"
and "now serving" signs found at customer service counters. When a process
wishes to acquire the lock it performs an atomic fetch-and-increment on a "next
available number" variable. It then spins until a "now serving" variable matches
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the value returned by the atomic instruction. To avoid contention on large-scale
machines, a process should wait between reads of the "now serving" variable for
a period of time proportional to the difference between the last read value and
the value returned by the fetch-and-increment of the "next available number"
variable. To release the lock, a process increments the "now serving" variable.

Our preemption-safe, handshaking version of the ticket lock uses one addi-
tional "acknowledgment" variable, which contains the number of the last granted
but un-acknowledged ticket. A releasing process sets the additional variable and
the "now-serving" variable and waits for the former to be reset. If the acknowl-
edgment does not occur within a timeout window, the releaser withdraws its
grant of the lock, and re-increments the "now serving" variable in an attempt to
find another acquirer. Changes to the acknowledgment variable are made with
compare-and-store to avoid an update race between a skipped-over acquirer and
its successor. Our ticket lock assumes that the "now serving" variable does not
have the opportunity to wrap all the way around and reach a value it previously
had, while a process remains preempted. For 32-bit integers, a 1 GHz processor,
and an empty critical section, a process would have to be preempted for more
than three minutes before correctness would be lost.

There is no obvious way to develop a preemption-safe or scheduler-conscious
version of the ticket lock without either handshaking or exporting lock code into
the kernel. The problem is that the lock does not keep track of the identities
of waiting processes. The releaser of a lock is therefore unable to use KE-1 to
determine the status of its successor: it does not know who the successor is.

A caveat with all three of our modified locks is that they give up the FIFO
ordering of the scheduler-oblivious version. It is thus possible (though highly
unlikely, and with probability lower than the probability of starvation with a
test-and-set lock) that a series of adverse scheduling decisions could cause a pro-
cess to starve. We have considered algorithms that leave preempted processes
in an explicit queue so that they only lose their turn while they are preempted.
Markatos adopted a similar approach in his real-time queue lock [ML91], where
the emphasis was on passing access to the highest-priority waiting process. For
simple unprioritized mutual exclusion, leaving preempted processes in the queue
makes the common case more expensive: processes releasing a lock have to skip
over their preempted peers repeatedly. We consider the (unlikely) possibility of
starvation insignificant in comparison to this overhead.

The algorithms described in this section work only for single-nesting of locks.
In the case of multiply-nested locks, a process should make itself preemptable only
after releasing the outermost lock. This can be accomplished by keeping track of
the nesting by incrementing a local variable on acquires and decrementing it on
releases. The state flag should be set to preemptable only when the nesting reaches
zero.
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3.4.2 Reader-Writer Locks

Reader-writer locks are a refinement of mutual exclusion locks. They provide
exclusive access to a shared data structure on the part of writers (processes making
changes to the data), but allow concurrent access by any number of readers. There
are several versions of reader-writer locks, distinguished by the policy they use
to arbitrate among competing requests from both readers and writers. Reader-
preference locks always force writers to wait until there are no readers interested in
acquiring the lock. Writer-preference locks always force readers to wait until there
are no interested writers. Fair variants prevent newly-arriving readers from joining
an active reading session when there are writers waiting, and grant a just-released
lock to the process(es) that have been waiting the longest.

Our scheduler-conscious reader-writer lock is based on a fair scalable reader-
writer lock devised by Krieger et al. [KSU93]. When a writer releases a lock for
which both readers and writers are waiting, and the longest waiting unpreempted
process is a reader, the code grants access to all readers that have been waiting
longer than any writers. An alternative interpretation of fairness would grant
access in the same situation to all currently-waiting unpreempted readers. Like
the Smart Queue lock, the reader-writer queue lock uses both kernel extensions
KE-1 and KE-2.

Requests for the lock are inserted in a doubly linked list. A reader arriving
at the lock checks the status of the previous request. If the previous request is
an active reader or if there is no previous request, then the newly-arriving reader
marks itself as an active reader and proceeds. In all other cases the newly-arriving
process spins, waiting to be released by its predecessor. A process releasing a lock
must first remove itself from the queue. If the process is a writer this is an easy
task since it has no predecessor in the queue and the procedure is similar to
the one followed in the mutual exclusion section. If it is a reader however, then
the process may have to remove itself from the middle of the queue. To ensure
correct manipulation of the linked list data structure a reader process locks both
its own list node and that of its predecessor. It then updates the link pointers to
reflect the new state of the list. The locks protecting individual list elements use
test-and-set. We have opted for this type of lock because the critical sections
are short and the maximum number of contending processes is three. When an
unlocking reader attempts, unsuccessfully, to acquire the lock on its predecessor's
list element, it re-checks the identity of the predecessor in case it has changed as
a result of action on the part of whoever was holding the lock.

After a process has linked itself out of the queue, it must wake up its successor
if there is one. The procedure is similar to the one followed in the mutual exclusion
case. The releasing process checks the state of its successor and attempts to set its
state to unpreemptable-other. If the attempt is successful, the releasing process
proceeds to notify its successor that it has been granted the lock. If the attempt



52

fails, it notifies its successor of failure by setting a flag in the successor's node,
and proceeds to the next process in the queue. When notified that it has been
granted the lock, a reader uses this same procedure to release its own successor,
if that successor is also a reader.

3.4.3 Barriers

We discuss three types of preemption-safe and scheduler-conscious barriers in
this section. The first two types are designed for bus-based multiprocessors, or for
small partitions on larger machines, in which migration is assumed to be relatively
inexpensive. They differ in the amount of information they use in order to make
their decisions, and in the quality of those decisions. The first type requires no
kernel extensions; it employs heuristics and comes in several variants. The second
type employs kernel extension KE-3 to make optimal spin versus block decisions.
The third type of barrier is designed for large-scale multiprocessors, on which
migration is assumed to be an expensive, uncommon event. This barrier makes
optimal spin versus block decisions within each processor (or within each cluster
of a machine in which migration is inexpensive among small sets of processors),
uses a logarithmic-time scalable barrier across processors/clusters, and adapts
dynamically to changes in the allocation of processes to processors or processors
to applications.

Barrier synchronization's primary source of performance loss in a multipro-
grammed environment is the cycles wasted spinning while waiting for preempted
processes to arrive at the barrier. In order to reduce the performance penalty
of wasted spinning, processes can choose to block and relinquish their processor
to a preempted peer. Blocking however can be expensive, especially on modern
processors, due to the large amount of state that needs to be saved. There are
several possible ways to resolve this tradeoff, ranging from always spin to always
block. For an environment that is not known at compile time, neither extreme
provides a satisfactory solution.

Inspired by the work of Karlin et al. for locks [KLMO91], we have proposed
several variants of a competitive centralized barrier [KW93]. The simplest variant
spins for a fixed amount of time and then blocks. By setting the spin time equal
to the context switch time, we can guarantee that the algorithm takes at most
twice as long as necessary. More complicated variants gather information from
a small number of recent barrier episodes and shorten or lengthen their spinning
threshold based on the observed waiting time. In effect, they use the waiting time
at recent barriers to guess whether the machine is multiprogrammed. If waits
have been long, processes guess that they are sharing the processor, and should
therefore block at a barrier; otherwise they spin.

The competitive barriers require no kernel extensions, and often work quite
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well. They suffer from several limitations, however. The variant that always spins
for the duration of a context switch always wastes that time in a multiprogrammed
environment. The experience-based variants, on the other hand, make correct
decisions only if the number of available processors changes infrequently, compared
to the rate at which barriers are encountered. They also count on the work between
barrier episodes being more-or-less equal across processes: variations in workload
result in arrival time skews that can cause them to guess that multiprogramming
is happening when it is not. In this case, their performance degrades to that of
"always block."

Finally, all of the competitive barriers use a uniform policy for all processes:
either all will spin or all will block. Ideally on a system with N processes and
P processors (and inexpensive migration) the first N - P processes should block
while the remaining P should spin. By using kernel extension KE-3, we can

keep the application appraised of the number of available processors. Then, since

centralized barriers already keep a count of the number of processes that have
arrived at the barrier so far, and since they can easily incorporate knowledge of
the total number of processes, each process arriving at the barrier can make the

optimal choice as whether to spin or to block. This Scheduler Information barrier

has low overhead (a check against the number of available processors) and makes
the optimal spin versus block decision, and it makes this decision on a process by
process basis.

Barriers for large-scale multiprocessors are of necessity more complicated since
counter-based algorithms are too slow (linear in the number of processes) and
cause too much contention due to the bottleneck of the counter. Scalable barrier
algorithms use log-depth data structures to register the arrival and signal the de-
parture of processes. Unfortunately, these data structures tend to exacerbate the
problems caused by multiprogrammed environments, since they require portions
of the barrier code in different processes to be interleaved in a deterministic order.

This order may conflict with the scheduling policy on a multiprogrammed sys-

tem, causing an unreasonable number of context switches [ML91] to occur before
achieving the barrier.

The basic idea of our scalable scheduler-conscious barrier is to make the opti-

mal spin versus block decision within each individual processor or cluster, and to
employ a scalable log-depth barrier across processors, where context switches are
not an issue. Specifically, we combine the Scheduler Information barrier described

above with the scalable tree barrier of Mellor-Crummey and Scott [MCS91a]. Pro-
cesses assigned to the same processor or cluster use a Scheduler Information bar-
rier. The last process to reach the barrier becomes the representative process for

the processor/cluster. Representative processes participate in the tree barrier.

A partition generation count allows us to handle repartitioning-changes in
the mapping of processes to processors or clusters. We shadow this generation
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count with a count that belongs to the barrier. The process at the root of the
inter-processor barrier checks the barrier generation count against the partition
generation count. If the two counts are found to be different, processes within
each new processor/cluster elect a representative and the representatives then go
through a barrier reorganization phase, initializing tree pointers appropriately.9

This approach has the property that barrier data structures can be reorganized
only at a barrier departure point. As a result, processes may go through one
episode of the barrier using outdated information. While this does not affect cor-
rectness it could have an impact on performance. If repartitioning were a frequent
event, then processes would use old information too often and performance would
suffer. However, we consider it unlikely that repartitioning would occur more than
a few times per second on a large-scale, high-performance machine, in which case
the impact of using out-of-date barrier data structures would be negligible.

3.5 Results

This section presents a performance evaluation of different preemption-safe
and scheduler-conscious synchronization algorithms, including a comparison to
the best known scheduler-oblivious algorithms. We begin by describing our ex-
perimental methodology. We then consider mutual exclusion, reader-writer locks,
and barriers in turn.

3.5.1 Methodology

We have tested our algorithms on two different architectures. As an example
of a small-scale bus-based machine we use a 100 MHz, R4400 12-processor Silicon
Graphics Challenge. As an example of a large-scale distributed memory machine
we use a 64-processor partition of a 20 MHz Kendall Square KSR1. We have
used both synthetic and real applications. The synthetic applications allow us to
thoroughly explore the parameters that may affect synchronization performance,
including the ratio between the lengths of critical and non-critical sections, the
degree of multiprogramming, the quantum size, and others. The real applications
allow us to validate our findings in the context of a larger computation, potentially
capturing effects that are missing in the synthetic applications, and providing a
measure of the impact of the synchronization algorithms on overall system per-
formance. We have chosen applications that make heavy use of synchronization
constructs to ensure that synchronization time is a significant portion of program

9 Note that the representative for the re-organization phase is not necessarily the process that
will participate in the inter-processor phase of subsequent barriers; this latter role is played by
the last process to arrive at each individual intra-processor barrier.
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runtime. For applications that make little use of synchronization constructs, we
expect that the choice of the synchronization algorithm will have little or no im-
pact on performance.

Our synchronization algorithms employ atomic operations not available on
either of the two target architectures. We have implemented software versions
of these instructions using load-linked and store-conditional on the Chal-
lenge and small critical sections bracketed by the native synchronization primitive
(get-subpage and free-subpage) on the KSR. Our approach for the KSR adds
overhead to the algorithms, but this overhead is small. Moreover, because we are
running scalable algorithms, in which processes use backoff or spin only on local
locations, competition is essentially non-existent for the critical sections that im-
plement the "atomic" operations, and does not result in any significant increase in
overall levels of network and memory contention. Our results for the non-native
locks are therefore slightly higher in absolute time, but qualitatively very close
in character, to what would be achieved with hardware supported fetch-and_1I
instructions.

For the sake of simplicity, we employ a user-level scheduler in our experiments.
One processor is dedicated to running the scheduler. While the kernel interface
described in Section 3.3 would not be hard to implement, it was not needed for
our experiments, and we lacked the authorization to make kernel changes on the
KSR. For the lock experiments, each application process has its own processor.
Preemption is simulated by sending a signal to the process. The handler for this
signal spins on a flag that the scheduler process sets when it is time to return
to executing application code. The time spent spinning is meant to represent
execution by one or more processes belonging to other, unrelated applications.

For the scalable barriers, multiprogramming is simulated by multiplexing one
or more application processes on the same processor. Both the SGI and KSR
operating systems allow us to do this by binding processes to processors. The cen-
tralized barrier experiments require process migration. On the SGI we can restrict
processors (prevent processes from executing on them). Restricting a processor
increases the multiprogramming level on the remaining processors. Processes are
allowed to migrate among the unrestricted processors. The KSR operating system
does not provide an analogue of the SGI restrict operation, so we were unable to
control the number of processors available to migrating processes. For this reason
we do not report results for the centralized barriers on the KSR.

The multiprogramming level reported in the experiments indicates the average
number of processes per processor. For the lock-based experiments, one of these
processes belongs to the application program; the others are assumed to belong to
other applications, and are simulated by spinning in a signal handler as described
above. For the barrier-based experiments, multiple application processes reside on
each processor, and participate in all the barriers. The reason for the difference in
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methodology is that for lock-based applications we are principally concerned about
processes being preempted while holding a critical resource, while for barrier-based
applications we are principally concerned about processes wasting processor re-
sources while their peers could be doing useful work. Our lock algorithms and the
small-scale barriers are designed to work in any multiprogrammed environment;
the scalable barrier assumes that processors are partitioned among applications.
A multiprogramming level of 1 indicates one application process on each proces-
sor. Fractional multiprogramming levels indicate additional processes on some,
but not all, processors.

In most respects we believe that performance results on a real implementation
of our kernel extensions would be indistinguishable from those reported here; the
scheduler itself does very little work, and only once per quantum. The one excep-
tion arises in the lock experiments, where simulation of preemption via spinning
in a signal handler fails to capture any delays due to loss of cache, TLB, or mem-
ory footprint during preemption. Since these effects are inherently dependent on
the memory reference characteristics of whatever unrelated processes happen to
be running on the machine, they would be difficult to model in any experimental
setting.

3.5.2 Mutual Exclusion

We implemented ten different mutual exclusion algorithms:

TAS-B - A standard test-and-test and-set lock with bounded exponential back-
off. This algorithm repeatedly reads a central flag until it appears to be
unset, then attempts to set it atomically in order to acquire the lock. On
the SGI Challenge, this is the native lock, augmented with backoff.

TAS-B-np - The same as TAS-B, but avoids preemption in critical sections by
using the Symunix kernel interface.

Queue - A list-based queue lock with local-only spinning [MCS91a].

Queue-np - An extension to the Queue lock that avoids preemption in critical
sections, also using the Symunix kernel interface. This algorithm does not
avoid passing the lock to a process that has been preempted while waiting
in line.

Queue-HS - An extension to the Queue-np lock that uses handshaking to ensure
that the lock is not transferred to a preempted process. This is the first
algorithm described in Section 3.4.1.
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Smart-Q - An alternative extension to the Queue-np lock that uses kernel ex-
tensions KE-1 and KE-2 to obtain simpler code and lower overhead than in
the Queue-HS lock. This is the second algorithm described in Section 3.4.1.

Ticket - The standard ticket lock with proportional backoff, but with no special
handling of preemption in the critical section or the queue.

Ticket-np - A preemption-safe ticket lock with backoff, using handshaking to
avoid preemption in the critical section. This is the third algorithm de-
scribed in Section 3.4.1.

Native - A lock employing machine-specific hardware. This is the standard lock
that would be used by a programmer familiar with the machine's capabilities.
It does not incorporate backoff.

Native-np - An extension to the native lock that uses the Symunix kernel in-
terface to avoid preemption while in the critical section.

The Native lock on the SGI Challenge is a test-and-test-and-set lock imple-
mented using the load_1inked and store-conditional instructions of the R4400
microprocessor. The Native lock on the KSR 1 employs a cache line locking mech-
anism that provides the equivalent of queue locks in hardware. The queuing is
based on physical proximity in a ring-based interconnection network, rather than
on the chronological order of requests.'" We would expect the Native-np locks to
outperform all other options on these two machines, not only because they make
use of special hardware, but because the atomic operations in all the other locks
are built on top of them. Our experiments confirm this expectation.

Our synthetic application executes a simple loop consisting of a work section
and a critical section. The total number of loop iterations is proportional to the
number of executing processes. In designing a scalable synthetic application we
needed to ensure that the critical section did not become a bottleneck. Therefore,
we set the ratio of the lengths of the critical and non-critical sections on both
machines to slightly less than the inverse of the maximum number of processors.
Absolute quantum length (in cycles or microseconds) had no significant effect on
performance. We therefore concentrate here on the remaining variables in the
synthetic application: multiprogramming level and number of processors.

Figures 3.2 and 3.3 plot execution time of the synthetic application against
multiprogramming level for a fixed number of processors (11 on the SGI and 63
on the KSR). On the SGI, the scheduling quantum is fixed at 20 ms and the
critical to non-critical section ratio is 1:14. We used a random number generator
to vary the length of the critical section within a narrow range, to more closely

1 0We use the KSR's gspnwt instruction in a loop, rather than gspwt. Counterintuitively, the
latter does not perform well when there are more than a handful of contending processors.
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the queue: the Queue-HS, Smart-Q, and Ticket-np locks perform far better than
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more bus traffic than the scalable locks, and would interfere more with ordinary
memory accesses in other processes or applications. 11

On the KSR, the scheduling quantum is fixed at 50 ms and the ratio of critical
to non-critical section lengths is 1:65. The results show slightly different behavior
from that on the SGI. The Queue, Queue-np, and Ticket locks suffer an even
greater performance loss as the multiprogramming level increases. The Queue-
HS lock improves performance considerably, since it eliminates both the critical
section and queue preemption problems. Unfortunately, it requires a significant
number of high-latency remote references, resulting in a high, steady level of
overhead. The Smart-Q lock lowers this level by a third, but it is still a little
slower than the TAS-B-np lock. The best non-native lock is Ticket-np.

The Native-np lock provides the best overall performance. Since all the non-
native locks use native locks internally to implement atomic operations, this is
expected behavior. The TAS-B and Native locks perform well when the multi-
programming level is low, but deteriorate as it increases. If the necessary atomic
operations (fetch-and-add, swap, etc.) were available on the KSR 1, we would
expect the queue and ticket locks to perform better than they do by a small con-
stant factor. The closeness with which those locks follow the performance of KSR's
relatively complex built-in primitive suggests that that primitive is probably not
cost effective.

Increasing the number of processors working in parallel can result in a signif-
icant amount of contention, especially if the program needs to synchronize fre-
quently. Previous work has shown that queue locks improve performance in such
an environment, but as indicated by the graphs in Figures 3.2 and 3.3 they ex-
perience difficulties under multiprogramming. The graphs in Figures 3.4 and 3.5
show the effect of increasing the number of processors on the different locks at a
multiprogramming level of 2.

The synthetic program runs a total number of loop iterations proportional to
the number of processors, so execution time should not decrease as processors are
added. Ideally, it would remain constant, but contention and scheduler interfer-
ence will cause it to increase. With quantum size and critical to non-critical ratio
fixed as before, results on the SGI again show the Queue, Queue-np, and Ticket
locks performing poorly, as a result of untimely preemption. The performance
of the TAS-B and Native locks also degrades with additional processors, because
of increased contention and because of the increased likelihood of preemption in
the critical section. The Smart-Q and Ticket-np locks degrade more slowly, but
also appear to experience higher overheads. Increasing the number of processors

liThe synthetic application does not capture this effect; it operates almost entirely out of
registers during its critical and non-critical sections. The impact on data-access traffic can be
seen in our experiments with real applications.
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does not affect the TAS-B-np and Native-np locks until there are more than about
eight processors active (the point at which bus contention becomes an issue).

The results on the KSR indicate that contention effects are important for larger
numbers of processors. The native lock, with our modification to avoid critical
section preemption, is roughly twice as fast as the nearest competition, because
of the hardware queuing effect. Among the all-software locks, Ticket-np performs
the best but TAS-B-np and Smart-Q are still reasonably close.

Backoff constants for the TAS-B and Ticket locks were determined by trial and
error. The best values differ from machine to machine, and even from program to
program. The queue locks are more portable. As noted above, contention on both
machines becomes a serious problem sooner if the code in the critical and non-
critical sections generates memory traffic. Results from real applications indicate
that the queue locks suffer less from this effect.

To verify the results obtained from the synthetic program, and to investi-
gate the effect of memory traffic generated by data accesses, we measured the
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performance of three real applications: the Cholesky program from the Stanford
SPLASH suite [SWG92] running on matrix bccstkl5, a multiprocessor version of
Quicksort on 2 million integers, and a program that solves the traveling salesper-
son (TSP) problem for a 17-city fully connected graph. These programs contain
no barriers; they synchronize only with locks. The TSP and Quicksort programs
have similar performance. Figures 3.6 to 3.9 show the completion times for the
remaining two applications, in seconds, when run with a multiprogramming level
of 2 using 11 processors on the SGI and 63 processors on the KSR. As with
the synthetic program, multiprogramming was simulated by spinning in a sig-
nal handler when other applications were supposed to be running. Again we
see that scheduler-oblivious queuing of preemptable processes is disastrous. This
time, however, with real computation going on, the Ticket-np and Smart-Q locks
match the performance of the TAS-B-np and Native-np locks on the SGI, and
outperform TAS-B-np in Quicksort on the KSR. We also ran experiments with
a multiprogramming level of 1. Results (not shown) indicate that Quicksort and
TSP run about 10% slower when using the Queue-HS lock than they do with
the regular Queue lock. Otherwise, performance differences between applications
with preemption-safe or scheduler-conscious locks and applications with the cor-
responding scheduler-oblivious locks were negligible.' 2

We have also collected single-process latency numbers (i.e. the time to ac-
quire and release a lock in the absence of competition for the lock) to establish
the performance overhead of the preemption-safe and scheduler-conscious algo-
rithms with respect to their scheduler-oblivious counterparts. 3 Results appear
in table 3.10. They were collected by having a single process acquire the lock
repeatedly in a loop. As a result, they do not count the time required to bring
the lock into the cache if it was most recently accessed by a different processor.

In their original, scheduler-oblivious form, queue locks have roughly an ad-
ditional 8% overhead over centralized (ticket or test-and-test-and-set) locks.
Adding code to avoid inopportune preemption adds no more than 9% to the cost
of the queue locks, but significantly raises the cost of the centralized locks, not
only because they are faster to begin with, but also because they must pay the
overhead of scheduler consciousness in all cases, while the queue locks are able
to skip most of the special-purpose code when the queue of waiting processes is

121n addition to a lock-protected work queue, TSP uses 5 atomic counters, which we imple-

mented with fetch-and-add. Implementing them with critical sections instead, dramatically
increases the impact of synchronization on program run-time. In this case, TSP runs an ad-
ditional 10% slower when using the Queue-HS or Smart-Q locks than it does with the regular
Queue lock.

13At the time we collected the latency numbers, the KSR had been decommissioned, so we were

able to collect them only on the SGI. However since these are single-processor experiments we do
not believe that the KSR numbers would have added anything significant to the understanding
of the algorithms.
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Lock Latency (jis)

TAS-B 2.10
TAS-B-np 2.47 .37 = 18%

Ticket 2.10
Ticket-np 2.87 .77 = 36%

Queue 2.26
Queue-HS 2.46 .20 = 9%
Smart-Q 2.44 .18= 8%

native 2.04
native-np 2.39 .35 = 17%

Figure 3.10: Latency (acquire + release) of mutual exclusion locks on the SGI.
The extra numbers in the right-hand column indicate the absolute and percent-
age increase in latency of the preemption-safe and scheduler-conscious locks with
respect to their scheduler-oblivious counterparts.

empty.

3.5.3 Reader-Writer Locks

We implemented six different reader-writer locks:

Lock R-Lat (Ps) W-Lat (Ps)

RW-TAS-B 3.13 2.10
RW-TAS-B-np 3.15 .02 = 0% 2.52 .40 = 19%

RW-Queue 5.28 2.21
RW-Smart-Q 5.48 .20 = 4% 2.67 .46 = 21%

Figure 3.11: Latency (acquire + release) of reader-writer locks on the SGI. The
extra numbers in the second and third columns indicate the absolute and percent-
age increase in latency of the preemption-safe and scheduler-conscious locks with
respect to their scheduler-oblivious counterparts, for both the reader and writer
parts of the algorithms.
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Figure 3.12: Varying the multipro- Figure 3.13: Varying the multipro-
gramming level for the reader-writer gramming level for the reader-writer
lock on the SGI (11 processors). lock on the KSR (63 processors).

RW-TAS-B - A centralized reader-writer lock based on a standard test-and-
test.and-set lock with exponential backoff.

RW-TAS-B-np - The same as RW-TAS-B, but with avoidance of preemption
in critical sections, using the Symunix kernel interface.

RW-Queue - A scalable reader-writer lock based on the lock by Krieger et
al. [KSU93].

RW-Smart-Q - An extension to the RW-Queue lock that uses kernel extensions
KE-i and KE-2 to avoid preemption in the critical section, and to avoid

secs secs
RW-Queue 450- RW-Queue

RW-Smart-Q 450 RW-Smart-Q
RW-TAS-B .... RW-TAS-B ..

RW-TAS-B-np -- 375 RW-TAS-B-np
RW-Native ......
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225

10
.--- 1500 .......... . 7. ..... .. _._. .. .
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Number of processors number of processors

Figure 3.14: Varying the number of Figure 3.15: Varying the number of
processors for the reader-writer lock on processors for the reader-writer lock on
the SGI (multiprogramming level = 2). the KSR (multiprogramming level=2).
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passing the lock to a preempted process. This is the algorithm described in
Section 3.4.2.

RW-Native - A reader-writer lock based on the native synchronization primi-
tive. On the SGI this is identical to the RW-TAS-B lock.

RW-Native-np - The same as RW-Native, but with avoidance of preemption
in critical sections, using the Symunix kernel interface. On the SGI this is
identical to the RW-TAS-B-np lock.

Figures 3.12 and 3.13 show the performance of the various reader-writer locks
under varying levels of multiprogramming on the SGI (11 processors) and KSR
(63 processors), respectively. Figures 3.14 and 3.15 show performance on varying
numbers of processors, at a multiprogramming level of 2.

Reader-writer locks display behavior similar to that of mutual exclusion locks.
The RW-Native-np lock outperforms all the others in a multiprogrammed envi-
ronment. The RW-Smart-Q lock is a close second. The algorithms that do not
cope with preemption behave increasingly worse as the multiprogramming level
increases, though this effect is less pronounced than it was in the case of mutual
exclusion. Five percent of the critical sections in our experiments acquire a writer
lock; the rest acquire a reader lock, and can proceed in parallel with other readers.
Preempting a process that holds a lock usually means preempting a reader, not a
writer, so other readers can still proceed (so long as a writer is not yet in line).

For completeness, we ran experiments with one, five, and fifty percent writers.
Larger numbers of writers cause a higher degree of contention-expected since
there is less concurrency available-and degrade the performance of the RW-TAS-
B and RW-TAS-B-np locks. We present the five percent results here. The others
are qualitatively similar.

As in the case of mutual exclusion, the centralized RW-TAS-B and RW-TAS-
B-np locks still suffer from contention on large numbers of processors. Contention
effects are more pronounced than they were for mutual exclusion. With the ratio
of critical to non-critical work the same as in the mutual exclusion experiments,
we expected that the additional parallelism available due to the concurrency of
readers would reduce the observed contention, but this turned out not to be the
case. Graph 3.13 shows that the centralized RW-TAS-B-np lock actually improves
in performance as multiprogramming increases. With fewer processes running in
parallel, reductions in contention allow lock operations to complete faster, even
though there are fewer total cycles available to the application per unit of time.

We have also collected single-process latency numbers for both the reader and
writer parts of the locks. Results appear in table 3.11. They were collected by
having a single process acquire and release the lock repeatedly in a loop. As a
result, they do not count the time required to bring the lock into the cache if
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it was most recently accessed by a different processor. Most of the additional
complexity of the preemption-safe and scheduler-conscious versions of the reader
locks appears in the code for writers, rather than readers. Moreover, since the
scheduler-oblivious overhead for readers is already nearly 50% higher than the
cost of a mutual exclusion lock, the percentage increase in latency for readers
when moving to a preemption-safe or scheduler-conscious lock is insignificant.
The increase in latency for writers is on the order of 20%.

3.5.4 Barriers

We present results on barrier synchronization in two sections, one for small-
scale machines such as the SGI Challenge (these results also apply to small par-
titions of a larger machine), and one for large-scale machines such as the KSR 1.

Small-Scale Barriers

For small-scale, centralized barriers, we implemented three baseline cases-
always spin, always block, and spin-then-block-, three competitive algorithms
that adjust their behavior based on previous barrier episodes, and the Scheduler
Information barrier of Section 3.4.3, which uses kernel extension KE-3 to make
an optimal spin versus block decision:

C-spin - All processes spin while waiting for their peers to reach the barrier.

C-block - Processes never spin; if they need to wait, they place themselves on
a semaphore queue. The last process to arrive at the barrier wakes up its
peers by performing V operations on the semaphore.

C-sp-blk - Processes spin for a bounded amount of time equal to the cost of a
context switch. If the bound expires before the barrier is achieved, then the
process yields the processor by performing a P operation on a semaphore.
The last process to arrive at the barrier checks the semaphore queue and
wakes up any processes that are blocked.

C-last1 - Processes spin for a period of time determined by how long they waited
at the previous barrier episode. This time is increased if the process did not
exceed it during the last barrier episode and decreased otherwise. The upper
bound on the time is the cost of a context switch.

C-avg3 - This barrier is similar to the C-lastl barrier, except that the last three
barrier episodes are used in determining the amount of time spent spinning.

C-coarse - A competitive barrier similar to the C-lastl barrier, except that the
spinning time is not adjusted incrementally, but rather all at once.
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C-sched - A barrier that makes an optimal spin versus block decision based on
the number of available processors (as reported by kernel extension KE-3)
and the number of processes that have yet to reach the barrier.

secs
320

280

240

200

160c 160 / .,, ....... C-spin

120 C-block120 .......... C-sp-blk ....

80 C-avg3
C-lastl

40 C-coarse -
40 .C-sched

0
1 1.5 2 2.5 3

multiprogramming level

Figure 3.16: Performance of the small-scale barriers for the synthetic program.

Figure 3.16 shows the performance of the synthetic application on the SGI
Challenge when using different barrier implementations, as the multiprogramming
level increases. Our experiments were run in a dynamic hardware partitioned en-
vironment, where the number of processors available to the application varies
between 5 and 11, with an average of 7.9. The multiprogramming level is calcu-
lated based on the average number of processors and the number of processes used
by the application. The synthetic application performs no real work between bar-
riers; it does not capture the effect of data-access memory references. The kernel
scheduler moves processes among processors in order to balance load. Processes
running on the same processor are multiprogrammed with a quantum length of
30 ins, the default value used by the IRIX kernel scheduler.

In the absence of multiprogramming, the C-sched barrier performs as well as
the C-spin barrier-its overhead is low-, and significantly better than the com-
petitive barriers. As the multiprogramming level increases the spinning barrier's
performance degrades sharply, while the C-sched barrier retains its good perfor-
mance and its advantage over the other algorithms. It never spins when other
processes could make use of the current processor, and it avoids the overhead of
blocking in the last P processes to arrive at the barrier. At very high multipro-
gramming levels, the Scheduler Information barrier is only slightly faster than
the competitive and blocking barriers: as the number of processes per processor
increases it becomes less important to avoid blocking in the final process on each
processor.

To validate the results obtained with the synthetic application, we experi-
mented with two real applications as well: Gaussian elimination and Successive
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Over-Relaxation (SOR). Gauss solves a 640x640 problem without pivoting; SOR
works on a 800 x800 matrix for 20 iterations. Both applications use 11 processes
on 5-11 processors, with a quantum length of 30 ms and a repartition operation
(a random change in the number of processors) every 80 ms.

The main difference we observed with respect to the synthetic results is a
decrease in the impact of synchronization on overall performance, since it is com-
bined with the time spent in real computation. Figures 3.17 and 3.18 show the
completion time of Gaussian elimination at multiprogramming levels of 1 and 2
respectively; the corresponding results for SOR appear in Figures 3.19 and 3.20.
In both cases the C-sched barrier provides the best performance. In SOR, how-
ever, the heuristic barriers also provide good performance in both the multipro-
grammed and dedicated environments, while in Gauss they track the performance
of the blocking barrier. The reason is that in Gauss processes arrive at the barrier
skewed in time, due to the different amount of work they have to do. The heuristic
barriers wrongly assume that the skew is due to multiprogramming and resort to
blocking.

C-coarse C-coarse

C-iast I C-iast1

C-svga C-svga

C-sp-blk C-sp-blk

C-sched C-acbed

C-black C-bleak

C-spin C-pin-S

0 1 2 3 4 5 2 4 6 a

Time in sees Time sa s

Figure 3.17: Gaussian Elimination run- Figure 3.18: Gaussian Elimination run-
time for different barrier implementa- time for different barrier implementa-
tions (multiprogramming level=1). tions (multiprogramming level=2).

As with mutual exclusion and reader-writer locks, we experimented with a
variety of other values for each of the experimental parameters. The only param-
eter (other than multiprogramming level and number of processors) to display a
noticeable impact on performance was the frequency of repartitioning decisions.
As the time between repartitions increases, the performance of the competitive
barriers improves to some extent, since they need time to adapt to a change in
partition size, and an increase in the time between repartitions allows them to
amortize their adaptation cost over a larger number of episodes. The perfor-
mance of the blocking and spinning barriers is essentially independent of the time
between repartitions.
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Figure 3.19: SOR run-time for differ- Figure 3.20: SOR run-time for differ-
ent barrier implementations (multipro- ent barrier implementations (multipro-
gramming level=1). gramming level=2).

We were initially surprised to see a small but steady improvement in the per-
formance of the C-sched barrier as the time between repartitions increased. The
explanation is that it is possible for the algorithm to err when a repartitioning
decision occurs at the same time that the application is going through a barrier.
In this case, some threads will use old information to guide their decision and thus
may decide sub-optimally. When the time between scheduling decisions is large,
sub-optimal decisions happen less frequently, resulting in a small performance
improvement.

Scalable Barriers
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Figure 3.21: Varying the number of Figure 3.22: Varying the frequency of
processors for the barriers on the KSR repartitioning decisions for the barriers
(multiprogramming level = 2). on the KSR (57 processors).
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Figure 3.23: Gaussian elimination run- Figure 3.24: Gaussian elimination run-
time on the KSR using 57 processors time on the KSR using 57 processors
(multiprogramming level = 1) (multiprogramming level = 2)

For large scale machines we implemented and tested three barriers on the KSR:

Tree - Mellor-Crummey and Scott's tree barrier with flag wakeup [MCS91a].
This algorithm associates processes with nodes (both internal and leaves)
in a static 4-ary fan-in tree. After waiting for their children (if any) and
signaling their parent (if any) in the arrival tree, processes spin on locally-
cached copies of a single, global wakeup flag. The last arriving process sets
this flag. On KSR's ring-based topology, the resulting invalidations and
reloads approximate hardware broadcast.

Corn-tree - A competitive variant of the Tree barrier, in which processes spin for
only a bounded amount of time, as in the C-sp-blk algorithm of the previous
section.

Scal-SC - A scalable scheduler-conscious barrier that uses the C-sched barrier
among the processes on a given processor and a scalable tree barrier across
processors. This is the final algorithm presented in Section 3.4.3.

Barriers based on a centralized counter do not scale well to larger machines for
two reasons. First, their critical path length is linear in the number of processors;
second, the centralized counter can become a significant source of contention.
Given that processes do not migrate among processors, the Scal-SC algorithm
avoids these problems while making optimal spin versus block decisions.

Figure 3.21 compares the performance of the various barriers in our synthetic
application on the KSR 1, with a multiprogramming level of 2, and with varying
numbers of processors. Repartitioning decisions were made at one-second inter-
vals. As can be seen from the graph, the Tree barrier is rendered useless with
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the introduction of multiprogramming. Its performance degrades due to the large
number of context switches required in order to go through a barrier episode,
and the amount of time wasted before each context switch-equal to the schedul-
ing quantum. It is surprising to see that even the "spin then block" heuristic of
the Com-tree barrier performs quite badly in the presence of multiprogramming.
While processes do not have to waste a quantum before yielding their proces-
sors they still have to suffer the large number of context switches that degrade
performance. The Scal-SC barrier improves performance by an order of magni-
tude compared to the Coin-tree barrier. It requires the minimum possible number
of context-switches, while still maintaining the logarithmic path length and low
contention properties of the Tree barrier.

As we mentioned in Section 3.4, the Scal-SC barrier can be sensitive to the
frequency of scheduling decisions. We ran experiments to determine the level
of sensitivity. Figure 3.22 shows that if the time between repartition decisions
is very small, performance degrades quite sharply. We believe, however, that
repartitioning will be a rare event on large machines-as rare as the arrival and
departure of jobs from the system. For repartition intervals greater than 500 ms,
the Scal-SC barrier performs well.

To validate the synthetic results, we ran a barrier-based version of Gaussian
elimination on 57 KSR processors.1 4 The results appear in Figures 3.23 and 3.24.
In the absence of multiprogramming the Scal-SC barrier is only slightly worse
than the Tree barrier, and significantly better than the Com-tree barrier. The in-
troduction of multiprogramming renders the Tree barrier useless; its performance
degrades by at least an order of magnitude. At the same time, the Scal-SC barrier
outperforms Com-tree by more than 50%.

3.6 Synchronization Conclusions

In this chapter we presented solutions to the problem of synchronization on
multiprogrammed multiprocessors, for both small and large-scale machines. The
mechanisms we presented are suitable for real-time applications, such as the lock
used in shepherding or the barrier used in robot potential following algorithms.
The mechanisms also apply to a broader range of parallel applications, such as
the locks used in Cholesky or the barrier in SOR. Pseudo-code for the various
algorithms remain in an anonymous ftp site at the University of Rochester and
are currently in /pub/packages/sched-conscious synch.

14 We used pthreads to express parallelism in our barrier experiments. Due to limitations in
the pthreads environment on the KSR only 57 of the 64 processors in the partition could be
utilized.
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We identified the main sources of performance loss for the two most common
types of synchronization algorithms: locks and barriers. We also demonstrated
that the scalable versions of synchronization algorithms based on distributed
data structures are particularly sensitive to multiprogramming. Using a slightly-
extended kernel interface, in which processes are able to defer preemption briefly,
we examined several heuristic techniques-preemption-safe test-and-set locks
(developed by previous researchers), "handshaking" queue and ticket locks, and
competitive spin-then-block barriers-that avoid the worst performance anomalies
in multiprogrammed systems.

We then proceeded to define an extended kernel interface allowing communi-
cation of process state information between the user and the kernel. We used this
interface to construct scheduler-conscious algorithms: the Smart Queue mutual
exclusion and reader-writer locks, the Scheduler Information small-scale barrier,
and the scheduler-conscious scalable barrier. We demonstrated that these algo-
rithms perform well in the absence of multiprogramming and provide significant
performance advantages over their scheduler-oblivious counterparts in a multipro-
grammed environment.

For barrier-based applications, the Scheduler Information barrier and the scheduler-
conscious scalable barrier clearly outperform both the heuristic, spin-then-block
barriers and the scheduler-oblivious alternatives. For lock-based applications the
choice between preemption-safe centralized (test-and-set or ticket) locks and
scheduler-conscious queue locks is less clear. Increasing the multiprogramming
level decreases the contention observed by the application, since the number of
processes accessing a synchronization variable concurrently is reduced. As a re-
sult, scheduler-conscious queue locks were often (though not always) inferior to
the centralized alternatives in our experiments. As future increases in machine
size increase the number of contending processors in multiprogrammed environ-
ments, the balance should tip back toward queue-based algorithms. Moreover,
it is likely that coherence protocols on future machines will lack the ability to
efficiently keep track of a large number of processors sharing a common variable.
As a result, the cost of coherence management for the data structures of central-
ized synchronization algorithms is likely to be unacceptably high. This will again
argue in favor of queue-based algorithms, in which no two processes spin on the
same location.
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4 Scheduling

Scheduling involves deciding when to run a given task, how much time to allocate
to it, and in a multiprocessing enironment where to run it. The scheduling dis-
cipline has long formed the core research work in the hard real-time community.
In a hard real-time application it is imperative that a schedulability guarantee be
provided to the user, as well as the conditions under which the user can expect a
set of tasks to be scheduled. Scheduling mechanisms are typically set up to han-
dle specific assumptions about the types of tasks to be considered, e.g., regular
and periodic may mean tasks need to run every five seconds. Each scheduling
discipline is targeted for a class of applications exhibiting a set of definable con-
straints and properties. The goal of this chapter is to describe and evaluate a set
of scheduling paradigms appropriate for SPARTA environments.

We have described many properties of SPARTAs in past chapters. In this
chapter we focus on the fact that SPARTAs are programs responding to real-world
events and that the processes that generate schedulable work in the real world
can be modeled by continuous functions. Further, in many SPARTA applications,
the derivative of execution time (approximated by the change in execution time
from run to run) of those functions is small. We have developed three scheduling
policies particularly suitable for use in SPARTAs: Derivative Worst case (DW),
Standard Deviation (SD), and Last One (LI). DW allocates time based on a
maximum increase over the last execution time; SD allocates time based on a
certain number (definable) of standard deviations over the mean execution time
for a sliding window of times; and Li allocates time based on the last execution.
In addition we provide a standard Worst Case (WC) scheduling algorithm. In
keeping with the Ephor philosophy, each task can be scheduled using a different
policy. These policies provide different levels of guarantees and require different
amounts of user information.

The chart in Figure 4.1 shows a comparison between the different scheduling
mechanisms. It indicates if they require user input, if they provide guarantees,
whether they are adaptive, and their relative performance. In this chapter we
show that the DW policy provides superior performance for tasks whose time dis-
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Policy Require User Provide tive? Proc Utilization
Input? Guarantees? Adap Application Perf

WC Yes Yes No Poor

Yes Yes Yes Decent

SD No Statistical Yes Good

LNo Statistical Yes Very Good

Figure 4.1: Comparison of the scheduling mechanisms

tribution varies slowly. For those tasks, DW obtains better processor utilization
than the WC policy while still providing absolute guarantees. Li achieves high-
est processor utilization, but at the cost of occasionally missing deadlines. SD
provides approximately the same utilization as DW without requiring (perhaps
tedious) timings from the user, but provides only statistical guarantees. All of L1,
SD, and DW are more suitable than WC for SPARTA environments. In the rest
of this chapter we describe each of the policies in greater detail, provide insight
into the mechanisms used to implement them, and provide an evaluation of their
performance.

4.1 Policies

The Worst Case (WC) policy is taken from the hard real-time community.
There are many different implementable versions based on variations of the classic
rate monotonic work [LL73]. These variations account for different models of the
tasks such as regularity or periodicity. The worst case policy states that the
user provides the system with the longest time a particular task will ever require.
The system scheduler allocates time based on this worst-case value regardless of
whether the tasks are statically (once at initialization) or dynamically (throughout
execution) scheduled.

The drawbacks of this approach are, first, that the user must provide the worst-
case time (if the user fails in this endeavor then the system scheduling guarantees
no longer hold), and second and more serious, is the fact that this worst-case
time required to be provided by the user may only occur in a small fraction of
the parameter space of real world functioning, i.e., for the (vast) majority of
times the task is executed, its time may be significantly less than its worst-case
time, and thus valuable processor cycles will be wasted. In reality, this is a
frequently occurring phenomenon. The strength of using worst-case times though
is that the scheduler can provide the absolute guarantees that are needed in some
environments.
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While some soft real-time system designers have begun ignoring worst-case
timings because of the huge waste of resources, we believe that in many applica-
tions, including SPARTAs, certain portions will desire guarantees similar to those
provided for hard real-time applications. We therefore investigated mechanisms
that would take advantage of the properties of SPARTAs and yet be able to pro-
vide the guarantees being made in the hard real-time sector. This work produced
two policies: Derivative Worst case (DW) and Standard Deviation (SD). These
two policies share the goal of providing guarantees to the SPARTA programmer
that are more favorable than those provided using WC. They differ in the type of
guarantee provided and amount of user provided information required.

The Derivative Worst case policy (DW) allocates time for a task based on the
amount of time taken the last time the task ran plus a (user provided) percentage
of that last execution time. The goal of the DW policy is to provide absolute
guarantees to the user like WC while achieving considerably improved processor
performance. It accomplishes this by requiring the user to provide the system with
the maximum possible amount (percentage) of change between any two execution
times. In this way the system can guarantee that enough cpu time is allocated to
that task. The DW policy will work extremely well in environments that change
slowly over time. For example, consider a processing task with time proportional
to the number of objects in the world, e.g., cars on a city grid map. It is unlikely
that in one instant there would be zero cars in the grid and the next instant a
thousand, rather it is more likely that over time some cars will leave and some
will enter with the net effect at each step being a small increase or small decrease.
An observation of the DW policy worth noting is that the time can drop sharply
without causing a problem. It is only the maximum rate of increase that is
of concern. There are imaginable scenarios where the DW policy would perform
worse than the WC policy. If a task running time was almost always near its worst-
case time or if it had very sharp increases then the WC policy would be better.
However, for many classes of tasks the DW policy will perform considerably better
than WC. The DW policy shares the strength of the WC policy of providing
absolute guarantees, but also shares one of its weaknesses of requiring tedious
or potentially difficult to obtain information to be provided by the user. Its
primary strength is that it achieves good processor utilization while still providing
scheduling guarantees.

The Standard Deviation policy (SD) derives its name from the fact that it al-
locates time based on a z-value (number of standard deviations above or below the
mean) of execution times collected over a sliding window of previous executions.
Both the z-value and the size of the window are user definable. The default is a
z-value of one and a window of ten. The amount of time allocated to a given task
based on the default paramenters is the mean time over the last ten execution
times plus one standard deviation of the last ten execution times. Given a model
of the task execution time spread and the deadline constraints of the application,
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the user can choose an appropriate z-value. A strength of the SD policy is that it
does not require the user to provide any information (in empirical tests the default
values perform well). Another strength is that it allows analysis of the expected
deadline miss rate for a known (or assumed) distribution of execution times. Its
drawbacks are that it provides only statistical (and not absolute) guarantees, and
that tasks with erratic execution times a high z-value may need to be chosen.

The Last One (LI) policy allocates time for a task based on what the last
execution time for the task plus a small percentage to account for timing error,
scheduling overhead, etc. This is the simplest of all policies requiring no infor-
mation from the user and making no guarantees about deadlines. In reality this
policy works very well because there are two places where slack (extra) time oc-
curs in creating a schedule. One is that there is time left over after all the tasks
that will fit on a processor have been assigned. And the second is that some
of the scheduled tasks may take less time than they did last execution. These
two sources of slack time provide sufficient "breathing room" for this to be an
effective policy. Its strengths are that it provides the highest processor utilization
and requires no information from the user. Its drawbacks are that it provides no
guarantees. Under some execution time models and for some parameters one or
more of the scheduling mechanisms will be identical. If all execution times are
equal then L1, SD, and DW and all equivalent. This is true since the standard
deviation and derivative worst case increase will both be 0 thus collapsing to the
Li policy. For a distribution of monotonically decreasing execution times Li is
equivalent to DW since the derivative worst-case increase can be set to 0. As the
standard deviation of a distribution of execution times goes to 0, SD will tend
toward L1.

4.2 Analysis

Analyzing scheduling policies in real-time systems often involves determining
the schedulability of a policy given a set of assumptions, or ascertaining the policy
that provides the best schedulability for a given set of assumptions. However, in
our work, the analysis needs to proceed along slightly different lines. We assume
that there are always enough processors to schedule the hard and periodic tasks.
Our concern is how many processors are left available for the soft real-time and
high-level parallel tasks. The more the better.

To capture this behavior we define a number called processor utilization. This
is the amount of time available on a processor divided by the amount of time
actually used. For example, if there was one task scheduled on a processor, and
every second of wall time that task executed for a half of a second, then processor
utilization would be 50 percent or 0.50. Notice it does not matter how much
time was scheduled for the task, it could have been scheduled for a half a second,
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the full second, or any time in between. Only actual execution time matters in
calculating processor utilization. Therefore, given any distribution of execution
times (but constant), the WC policy will have lower processor utilization than the
Li policy. This is because when the scheduler allocates time under the WC policy
it needs to allow for the maximum possible execution time. In all but the worst
case, this will waste potential. It also means fewer tasks can be scheduled on each
processor because each requires a larger allocated block of time. The fewer tasks
(assuming they execute in the same time regardless of the scheduler) will have a
lower summed execution time and consequently lower processor utilization. We
have thus captured the desired effect. The processor utilization provides a hard
metric to compare scheduling policies along one dimension. Processor utilization
will be more thoroughly examined in Section 4.4.

Another means for comparison is how frequently a task misses its deadline, or
how likely such an occurrence is. As is standardly defined, a missed deadline occurs
when a task has not completed by the time it needs to run again. This would
occur in an average case scheduling paradigm if a task takes longer to complete
than expected and all other tasks execute in the expected amount of time. This
situation would prevent the first task from having access to the processor again by
the beginning of its next scheduled cycle. Since we assume that there are enough
processors to schedule all the tasks, WC and DW will never (in theory) miss any
deadlines, because they always leave enough room available for any circumstance
(as defined by the user). It is therefore never a system or runtime fault should
a deadline be missed under either of these scheduling policies, rather it would be
the user's fault for not entering the correct worst-case time (WC) or derivative
worst-case increment (DW).

However, using SD or Li it is possible, even expected (with low and defined
probability), that occasionally a task will miss a deadline. In the rest of this
section, we will analyze the probability with which this may occur. A missed
deadline under Li or SD will occur when the policy underestimates the amount of
time needed for the tasks of this execution cycle. Recall Li derives this estimate
from the last execution time and SD from a given z-val above the mean over some
previous window of execution times. If many tasks are scheduled on the same
processor, then the probability of missing a deadline is not based on one task, but
rather on the interaction of all tasks scheduled on that processor. For example, it
is possible for one task to be over its expected execution time, another task to be
under, and the net execution time to be within the scheduled time.

To analyze the probability that a given set of tasks takes longer than the
amount of time allotted by a scheduling policy we assume that the distribution
of times is Gaussian. This assumption appears reasonable as shown by the rep-
resentative graph in Figure 4.2 of the execution times from the vision processing
task of the shepherding application.
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Figure 4.2: Execution times for the vision processing task

We define Ito be the scheduling interval allotted to all the tasks. In a straight
Li policy I is assigned to be /y and we arrive at a model as shown in Figure 4.3
with probability density function:

P(x < z)= jz 1__ _[1_,/,d
P ( < ) JZ. 27ro. -T [x)~ dx.

To determine the probability that a deadline is missed, we need to know how likely
it is that the sum of the execution times is greater than the scheduling interval
I. Given that x - some event from the sum of the times of scheduled tasks, then
P(Missx) = P(x > yx) where

n

lix

For the rest of this discussion, we will, for convenience, set px to be 0. Therefore
the probability under these assumptions that we miss a deadline is

1 2- ~ ~ 2  dx,

which easily simplifies to 1/2.

In reality, however, Ephor schedules in a fixed extra amount of time, call it S, to
allow for timing inaccuracies, scheduling overhead, calculation error, etc, as well as
extra "breathing room" (note you could trade efficiency for safety by modifying S).
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I

Figure 4.3: Gaussian distribution with I set assuming no offset and no slack

The model shown in Figure 4.4 represents the model with 6 included. Here again
I represents where the interval is set. Notice that in this case we have a smaller
probability of missing a deadline. Specifically the P(Miss.) = P(x > yix + 8).
Solving for the PDF gives us 1 - f_ 1)/e e-[(X-)/la dx, and again setting /y
to 0 gives us

P(Missx) = 1 - 1 -2 dx'

which can be evaluated using tables of the normal probability distribution found
in most statistics books.

I

Figure 4.4: Gaussian distribution with an offset but no slack

Both of the above models have assumed that the tasks are able to be "packed"
on to the processor in a perfect fit. However, even after placing as many tasks
on a processor as possible, there is still going to be slack time left over due to
the inability to find a perfect fit. As before, if we assume a random mix of jobs,
the slack time will tend toward a Gaussian distribution. Again, to get a feel
as to whether a Gaussian distribution is a reasonable model, we collected sets
of slack times for a different numbers of tasks and for varying times. Figure 4.6
shows the distribution when there were few tasks involved in being scheduled, and
Figure 4.5 illustrates the slack time distribution when many tasks are involved.
The complete model is now represented in Figure 4.7 and when these two random
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variables are summed, the distribution of the result is a Gaussian distribution as
shown in Figure 4.8.
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Figure 4.5: Slack times for many tasks Figure 4.6: Slack times for few tasks

Figure 4.7: Gaussian distribution for execution and slack times

Figure 4.8: Summed Gaussian distribution with offset slack

Here we want to know the probability such that

P(miss,) =P(x > ze) A P(x < zs),

where value, are values taken from the slack distribution. Since the number of
packable tasks can be given by [jJwhere a is the mean of the distribution of
slack times. Then

slacktime = x-- [X
a
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and the PDF can be evaluated as

P(Miss ) = j_ P(x > z,) n P(x < z,).
x=0

Since P(A+B) = P(A)P(B), continuing along this line of reasoning would lead to
a convolution integral. However, we know from probability theory that [t(x - s) =
/ x-/Ps and o 2(x-s) = u+a', and we know that the convolution of two Gaussians
distribution is a Gaussian distribution. Thus substituting into our last solved PDF
with p = 0 we get

P(Miss') = - e[2 x,2 dx

27r +-ao

which again can be evaluated using most statistics books. This gives us a de-
scription of how likely each scheduling policy is to miss a deadline based on a
certain input set of tasks. The remaining question is how well the different poli-
cies perform. We address this question in Section 4.4. With these two pieces of
information the tradeoffs for the tasks in the application can be evaluated and the
appropriate scheduling mechanisms can be requested from Ephor.

4.2.1 Time Distributions

For the previous analysis we have assumed a Gaussian distribution of execution
times. In addition to the overall distribution the time pattern of execution times
is very important. To provide a better understanding of the scheduling policies we
describe the effect the time distribution can have on the policies. For the graphs
in this section wall time will be on the X axis and execution time on the Y axis.
For example a task with five execution times of 10, 5, 10, 15, and 10, appears in
Figure 4.9, Section A. The scheduling policies will handle most time distributions
adequately and as expected, but some distributions will have a large effect on their
performance. For example the time distribution in Section B (of Figure 4.9) will
cause problems for L1, SD, and DW. Li and SD will miss half the deadlines, while
DW would have to specify a very large derivative. A monotonically decreasing
distribution as in Section C is ideal for all policies except for WC, which will
have low processor utilization, while a monotonically increasing distribution as in
Section D could be a particular problem for L1. For such a distribution S should
be increased. These time distributions were just made as examples, and we would
expect real-world time distributions to be closer to the one in Section E. The
closer the time distribution is to section E the closer the actual behavior will be
to the behavior analyzed in this section or the empirical behavior presented in
Section 4.4.
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4.3 Implementation and Mechanisms

There are several different pieces required to turn the different scheduling
policies into actual Ephor mechanisms. First, is a method provided to allow the
user to request the desired policy and to provide any information required by
that policy (worst-case time for WC, worst-case increment for DW, and number
of standard deviations (z-value) and window size for SD). As with any scheduling
mechanism, the correctness of WC and DW can be guaranteed if and only if the
user has entered worse case times or increments that hold true for the duration of
the application. The mechanism for specifying this information is provided by the
Ephor startup functions. For convenience and flexibility, Ephor allows the user to
change the scheduling policy dynamically for a given task using a set of runtime
functions similar to the initialization calls. It is also worth noting that different
policies can be chosen for different tasks. Thus, a scheduling policy can be chosen
that is best suited for each task. Care should be taken however when mixing
policies for periodic soft real-time jobs. While tasks with hard real-time priorities
are separated from other periodic soft real-time tasks, there is no distinction made
among soft real-time tasks. It is possible then, if tasks with DW and Li are mixed,
that one of the DW tasks might miss a deadline because an Li task ran over. So
while it is possible to set the scheduling policy for a given task individually, it is
important to understand the interactions between the tasks.

As mentioned in Section 4.1 the Li and SD are "hands off" for the user, requir-
ing no input of potentially difficult to obtain information. This does, however,
place a greater burden on Ephor to insure that a reasonable schedule is built.
Ephor needs to track the time each of the tasks took to execute. This is accom-
plished by a header and footer that is inserted into every task. Among other
things, the header marks the time a task starts and the footer marks when the
task finished. The 21ns granularity bus cycle counter is used and provides am-
ple resolution for timing any task in our system. Since this is a multiprocessing
environment, it is possible for races to occur between the tasks writing their exe-
cution time and the scheduler or Ephor reading it. In an actual implementation
the kernel would have control at the beginning and end of each task and this
race would not be an issue. However, since we employed a user-level scheduler,
we needed to "coordinate" with the tasks. One solution would be to introduce
locking. However, this would have introduced undesired overhead. Instead, for
L1, a median value of the last three timings are used. In the rare event that a
timing was garbled it posed no real problem. Serendipitously, using the median
value also simplified other problems such as timer wrap. In implementing the SD
policy a similar behavior was achieved by tossing out the highest and lowest times
within the window of observation.

The different scheduling policies affect how the requested time slot for each
task will be determined. If a task has requested the WC policy then the time slot
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requested of the scheduler for that task will always be what the user has explicitly
specified as the worst-case running time for that task. For the DW policy the
requested time slot will be the last time plus the worst-case increment based on
the last time (here too it is actually the median of the last three times). For
SD it will be the default number of standards above the mean. The number of
deviations above the mean can be changed by the mean can be changed by user
if so desired. Finally, for Li it will request the median of the last three running
times.

4.3.1 Scheduling Algorithm

At the point the scheduler is given a set of tasks, it is no longer aware of what
policy generated the time slot for each task. All it is presented with is a set of
tasks and associated with each task is a priority, a period, and a requested time
slot for that task. The scheduler's goal is to pack the tasks on as few processors
as possible while not violating any constraints, such as combining hard and soft
real-time tasks or overbooking processors. The scheduler sorts tasks first by pri-
ority and then by period. It uses a multiprocessor version of the standard rate
monotonic scheduling algorithm. It places as many of the smallest period tasks
as possible on the lowest numbered available processor (some have been reserved
for special functions), and then the next, etc. Ephor does not attempt to schedule
to 100 percent processor utilization but instead schedules to a fixed amount short
(previously defined as 8) of 100 percent to allow for timing inaccuracies, schedul-
ing overhead, calculation error, etc, as well as extra "breathing room" (currently
about five percent). For the next sorted group it again starts with the lowest num-
bered available processor. It cycles through all the available processors for each
bin of tasks in the sorted list. An important side effect of this algorithm is that
task migration is infrequent and occurs only when the cumulative execution time
of the tasks have changed such that a task no longer fits its previously assigned
processor, or it can fit on an earlier one. As part of this process the scheduler
needs to keep track of the processor utilization and can make this information
available through Ephor to the application. Ephor also makes available the last
execution time of a task and a running average over the selected SD window.

4.3.2 Methodology

As with the other Ephor experiments, the results in this chapter are from our
twelve processor SGI Challenge machine with 100MHZ R4400 processors. To iso-
late the effects of the scheduling algorithms completely, all non-essential (standard
Unix processing, graphics, etc.) computation, including the scheduler itself, was
shipped to the remaining processors. In this way we guarantee the observed ef-
fects are strictly based on the differences between the different scheduling policies.
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The scheduling algorithms had eight available processors on which to schedule the
tasks.

In addition to the requisite tasks for the shepherding application, we created
a set of tasks for which we could vary: the number that existed, the time each
task took to execute, and the period. To allow for fine control of the machine
load this information could be set individually for each task. For each scheduling
algorithm, the tasks, both the shepherding and the controlled tasks, were placed
onto processors as described above in implementation section 4.3. The goal was
to place these periodic and predictable tasks onto the fewest number of processors
leaving as many processors as possible available for the high-level parallel plan-
ner. The assumption being that given more processors, and thus more processing
power, the parallel planner would be able to arrive at a better solution in the given
time constraints. The ability to "pack" the tasks onto processors was affected by
the scheduling algorithm used.

There were two classes of information we desired from our experiments. One
was the application performance. This metric simply involves counting the number
of confined sheep after the system has reached stabilization. Results reported are
from a representative run. This is an application-dependent metric but provides
insight into how much an application might benefit from using one particular
scheduling policy versus another. This number is easily obtainable and required
no special instrumentation for these experiments. The larger the number of sheep
confined the better the application's performance is considered to be.

The second and more important metric is processor utilization. Processor
utilization allows an application independent comparison of the scheduling poli-
cies. Higher processor utilization is considered more desirable since this meant
a scheduling policy is better able to use the resources of the system. Processor
utilization is defined as the actual amount of time the tasks took divided by the
amount of time scheduled for them. For example, if a policy dictated that a task
be given a two millisecond block fifty times a second but the task took only one
millisecond every time it ran, then processor utilization would be fifty percent.
A processor utilization is computed independently for each processor and an av-
erage processor utilization is computed for all the processors required to run the
given set of tasks. For example, if a scheduling algorithm required two processors
to schedule all the tasks while another required four, then the second algorithm
would have a utilization half that of the first. The most interesting number then
is average processor utilization, as this implicitly contains the number of proces-
sors required for a given task set. Remember the fewer the better. Note that
it is possible for the processor utilization metric to be greater than one hundred
percent. This can occur if the tasks on a given processor take more time to run
then is allocated to them. This phenomenon is obviously not desired because it
means some task had to miss a deadline. In fact, this is one empirical number we
can apply to a policy like Li to provide insight into how often tasks suffer (miss
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a deadline) because of its attempted average case performance.

Unlike the number of sheep confined, processor utilization values were not
readily available. To obtain them, timing code was inserted into the header and
footer of each task. The code made use of the fine-grain 21 nanosecond clock
available on Challenge architectures. This resolution is sufficiently fine grain to
time any of the tasks used in our application. The execution time of the task was
divided by the rate of the task and summed across all tasks. This value represents
the percentage of actual cpu use for a given block of time on a given processor
and is defined to be the single processor utilization. To obtain average processor
utilization, all individual processor utilizations were summed and then the sum
was divided by the number of processors required by the scheduling algorithm.

We were able to vary a number of parameters independently, including the
number of control load tasks, the amount of time these tasks took, the period of
the tasks, and their priority. The cross product of varying all these parameters
across experiments is very large. We explored the parameter space and provide
results from the portions highlighting an interesting comparison between different
scheduling policies in sections 4.4.2 and 4.4.3. Other portions of the space, while
quantitatively different, represent the same qualitative results.

To create a controlled environment for exploring the parameter space we fixed
the shepherding application so the actuators had no effect on the real world. We
call these experiments the synthetic ones meaning they did not perform any real
work, or more accurately the effect of their work did not have an impact on the
real world. Instead we made sheep escape the field at a constant rate. In so
doing we precisely controlled how much load was generated by the application.
These experiments are useful for showing us the interesting parts of the parameter
space. For example, in some regions (of the parameter space), we determined, as
reported in Section 4.4.2, there was no difference between the different applications
primarily because the machine was so under-loaded that even a very poor policy
was sufficient. From our experience, and in interaction with other researchers, we
do not expect this to be the case for real applications. In fact the opposite is more
often true, i.e., the machines are over-loaded.

To further control the amount of load in the system we created additional
tasks. The execution times of these tasks could be controlled by parameters.
We could make them constant or vary with the number of sheep in the field (as
many of the actual tasks for shepherding do). The ability to vary the number of
tasks allowed us to explore the policies when handling anywhere from a few tasks
(about 5 - minimum needed to make the simulator work) to a large number of
tasks (about 50)

All the experiments were started with a fixed number of sheep placed in random
configurations (position and direction) around the field. Over time some of the
sheep escaped the field. The remaining ones were considered confined. In the
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shepherding simulations, the application reaches a stabilization point where it is
able to maintain a fixed number of sheep without allowing any more to escape.
This was the number used in the application performance comparisons.

4.4 Performance and Results

The results in this section are taken from our shepherding simulator. It is
a real-time simulator, not a simulator of a real-time application: The processor
simulating the real world is not affected by other work in the system. Thus the
SPARTA can fall behind the (simulated) real world.

The performance of a real-time application is often correlated with how ef-
ficiently it can use the resources on the machine. Indeed, the results in this
section show a correlation between high processor utilization and good applica-
tion performance. Achieving higher processor utilization involves a tradeoff either
in providing different information about the tasks, or in accepting the possibility
that on occasion a task may miss its deadline. In this section we will show that
Li has the highest utilization, but a task using the Li scheduling paradigm is
more likely to miss a deadline than if using any other paradigm. SD has the next
best utilization but may not be appropriate for some (highly variable (in execu-
tion time) tasks) and still admits missing deadlines. DW is close to SD, but it
guarantees no deadlines are missed. It too may not be effective for highly variable
tasks. In addition it requires user input where Li and SD do not. It does, how-
ever, achieve much better processor utilization and performance than WC while
maintaining the same guarantees as WC. As expected the WC policy translates
into the worst utilization and performance.

As a reminder, we used two metrics to evaluate the different scheduling mech-
anisms, one application dependent and the other application independent. The
application metric is the number of sheep confined within the field after stabi-
lization, and the application independent metric is the processor utilization. The
number of sheep confined is given in a bar chart where the number for a given
scheduling algorithm represent the number of sheep confined at the stabilization
point. The processor utilization results are presented as graphs with time on the
x axis and processor utilization (between 0 and 1) on the y axis. The sheep con-
fined charts are straight forward, but it is worth highlighting the salient features
in the processor utilization graphs. The experiment we ran was to start with 350
sheep moving in random directions. Many tasks (such as the vision processing or
perimeter checking) are tied to the number of sheep on the field, so over time the
work required of these tasks diminishes.
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4.4.1 Graph Interpretation

There are two classes of utilization graphs: individual processor utilization
graphs and average processor utilization graphs. For each experimentthere are
eight different individual processor utilization graphs and one average processor
utilization graph. The average graph is generated by summing up all processor
utilization on active processors and dividing by the number of active processors.
There is considerable information contained in the processor utilization graphs.
Figure 4.10 shows a processor utilization graph for a synthetically generated pro-
gram for processor 7 from a run with many(50) tasks. Remember that the graphs
will look very smooth and regular for the synthetic runs since they represent very
controlled settings. The first thing to observe is that for processor 7, utilization
drops to 0 at around 25 seconds. This indicates that all tasks have been assigned
to other (lower numbered) processors, a good thing because that now means this
processor is free and available for running a high level planner, such as the par-
allel save sheep planner. Another interesting feature is the step-like nature of
the graph. In the first 20 seconds each vertical step is an increase in processor
utilization. This occurs because as the amount of work to do in the application
decreased (fewer sheep surviving to monitor) an extra task could be taken from
processor 8 and assigned to processor 7 thus increasing the effective workload on
processor 7. While the processor utilization on 7 shows a step increase, at this
instant the average processor utilization would show no change. The time from
approximately 20 to 25 seconds represents the period where tasks were taken off
of processor 7 and assigned to processor 6. Notice also between 20 and 25 seconds
there is lag from when Li and SD move a process to when DW does. This is
indicated in figure 4.10 by the lag denotation. At around 25 seconds we would
expect to see an increase in average processor utilization since now the scheduler
has managed to pack the tasks onto one fewer processors and processor 7 is no
longer required. The processor utilization for WC is a steadily decreasing function
for our experiments, because as sheep leave the field and there is less actual work
required to monitor the remaining ones, WC continues to allocate the maximum
needed time for that task.

Next we examine the processor utilization from processor 4. This is the first
processor the scheduler attempts to place tasks on, so it will always have some
processor utilization. Again for illustration purpose we have taken the results
from the synthetic shepherding application. There are three prominent features
in Figure 4.11. The steady decrease in the curves followed by the instantaneous rise
is caused by the fact that as sheep escape there is less work needed to monitor the
remaining ones. As the work becomes small enough, it becomes possible to place
more tasks onto processor 4 and an increase in processor utilization occurs. The
size of the steps becomes smaller over time because the time of each of the tasks
in the application is decreasing, thus, a smaller drop in available cycles is more
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Figure 4.10: Example processor 7 utilization

readily filled by some available task from another processor, and consequently
migrating that task causes a smaller gain in processor utilization. Again the
smooth decrease in the WC plot occurs because the amount of scheduled time for
the tasks can never decrease, yet the actual execution time does.
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Figure 4.11: Example processor 4 utilization

The last illustrative example shown in Figure 4.12 represents the average pro-
cessor utilization from the same experiment as the utilizations for processor 4 and
7 were taken. As alluded to in the previous examples, the spikes in this graph oc-
cur when all the tasks can be packed onto one fewer processors. At that time there
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is the same amount of actual work occurring, but on one fewer processors, thus the
average processor utilization is higher. Again the WC utilization is lower. Also
observe (as indicated in the figure by the lag denotation) the increased amount
of time taken by DW before moving to a higher processor utilization. With the
ability to interpret the processor utilization graphs we turn our attention towards
results from the different experiments that were performed, synthetic and real,
and their significance.
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Figure 4.12: Example average processor utilization

4.4.2 Results from Synthetic Runs

When there is very low load placed on the machine by the application, there
is not much difference in performance between the different policies. The amount
of load is determined by the amount of computation per task. Low load repre-
sents minimal computation, high load represents the maximal computation, and
moderate load is between the two. Figures 4.13 and 4.14 show the average pro-
cessor utilization under low load conditions for few tasks and many tasks. The
utilization graphs are essentially the same since when there is very little for each
task to do, the sum of their execution times is such that they can all be placed
on one processor.

As additional load is placed on the system the differences between policies
begins to show. Figure 4.15 shows a comparison average processor utilization for
the different mechanisms running under moderate load. Even under moderate load
WC is wasting resources. Also under moderate load DW is starting to separate
from SD and Li as indicated by the lag in decreasing the number of required
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Figure 4.13: Average processor utiliza- Figure 4.14: Average processor utiliza-

tion with few tasks and low load tion with many tasks and low load

processors. A more telling sign of this effect is shown in figure 4.16, where on
processor 5 we see more clearly the lag in the time required (by DW) to move the
tasks off of processor 5.

1.2 1.2

10.8 L 1 0.8

0.6 DW 0.6 DW
0 0

20.4 20.4

0.2 0.2 L ,
0.2 0.2 SD

0 0
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

time (secs) time (secs)

Figure 4.15: Average processor utiliza- Figure 4.16: Processor 5 utilization
tion with moderate tasks and low load with moderate tasks and low load

The most interesting and important portions of the parameter space is the
region where the number of tasks and amount of computation per task cause a
high load to be placed on the machine. Figures 4.17, 4.18, and 4.19 show the
results when a high load is placed on the parallel machine for few (5), moderate
(25), and many (50) tasks. Under high load and a large number of tasks the DW
mechanism shows lower processor utilization for significant portions of the time.
The reason SD and Li are nearly identical is because for the synthetic programs
the variance in execution time is very low. This also allows DW to perform better
than otherwise expected. In Section 4.4.3 the performance between these three
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policies is differentiated. The final synthetic experiment we ran was to change the
rate at which the tasks ran to see how this affected performance. Figure 4.20 shows
an experiment similar in amount of work to 4.19, but with a greatly increased rate
(10 times) on the controlled tasks. The behavior for this and other different rate
experiments is similar to the default rate for the same amount of work.
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Figure 4.17: Average processor utiliza- Figure 4.18: Average processor utiliza-
tion with few tasks and high load tion with moderate tasks and low load

1.2 12

.-0.8 l. 081~ 1I",.N 08i \ ,,{

isf
S0.6 0.6

P 0.4 20.4

0.2 0.2 WC

0 0
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

time (sees) time (sees)
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4.4.3 Results from Real Program

We report results from two different scenarios of running the actual real-time
shepherding simulator. In the first one, only tasks required by the shepherding
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application were scheduled. In the second version we added 15 additional tasks
whose execution time distribution was similar to that of the shepherding tasks.
The motivation for this second experiment was to get a feel for how the mecha-
nisms would perform if they had to handle a larger number of tasks. Figure 4.21
shows average processor utilization results from the first scenario and Figure 4.22
from the second scenario. We see that now the mechanisms' behavior is quite
different. As expected, Li is maintaining high processor utilization, and WC has
poor utilization. The mechanism based on the SD policy achieves second best
processor utilization and WC next. Figures 4.23 through 4.26 show the processor
utilization of individual processors 4 through 7 for the second scenario.
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Figure 4.21: Average processor utilization from real program with few tasks
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DW provides the same scheduling guarantees as WC, so if the user can pro-
vide the worst-case increment much better utilization can be achieved while still
meeting guarantee requirements. DW outperforms WC for many SPARTA ap-
plications since their behavior is based on real-world events and the real-world
tends to be continuous without instantaneous changes. Thus WC is an ideal
candidate for real-world applications requiring guarantees. For applications with
a greater tolerance to missed deadlines, an approach like SD or LI will achieve
better processor utilization and will most likely translate into better application
performance as shown in Figure 4.27 (for the first scenario) and Figure 4.28 (for
the second scenario)
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4.5 Scheduling Conclusions

The results reported in this chapter from the application independent processor
utilization metric, and from the application dependent application performance
metric, allow several conclusions to be drawn:

e The last one mechanism provides the highest processor utilization among
the mechanisms examined. For applications that can afford to miss a dead-
line occasionally, this translates into high application performance.

9 For applications that have a strict deadline requirement and can provide
worst-case increments, the derivative worst case mechanism will signifi-
cantly outperform the worst case mechanism.

e For applications that want a controlled probability of missing a deadline
the standard deviation mechanism provides a good alternative to the less
precise last one mechanism, while still providing better performance than
either of the mechanisms based on worst-case times or increments.

e It is possible to select different mechanisms for different tasks thereby choos-
ing the mechanism most suitable for a given task. Users should be careful
though about the interactions of the different mechanisms since a less strict
policy such as Li or SD could compromise a strict one such as DW or WC.

e One of the benefits of the last one and standard deviation mechanisms
is that they do not require any user input. This property is well matched to
the Ephor philosophy of having the runtime take responsibility for managing
resources from the user. These policies also provide better performance than
the worst-case mechanisms.
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5 Ephor Mechanisms

In this chapter we present the set of mechanisms available from Ephor. This
set includes some new mechanisms we have designed as well as some other suc-
cessful mechanisms that have been incorporated from the literature. The set of
mechanisms described and evaluated in this chapter provides a reasonably com-
prehensive set (enumerated in Section 5.1) of what a SPARTA programmer would
require when designing an application. Additionally, Ephor is extensible, that is,
if another mechanism is desired by a particular SPARTA programmer, it could be
incorporated into Ephor fairly easily. Ideally the user definable mechanisms would
be linked in at runtime. In Section 5.1 we provide a list and description of each of
the mechanisms. Section 5.2 discusses dynamic technique selection in more detail
and provides performance results. In Section 5.3 we reiterate the usefulness of
an adaptive scheduling paradigm and show its effectiveness when combined with
parallel process control. We finish the chapter in Section 5.4 with conclusions
from our examination of mechanisms.

5.1 A Set of Mechanisms

The mechanisms we have included in Ephor allow the SPARTA programmer
to concentrate on the control of the application rather than on resource allocation
issues. The mechanisms focus on adaptability, providing the user flexibility to
adapt to a changing world. In this section we describe each mechanism and give
examples of its use.

1) Dynamically select technique based on internal system state.

Ephor keeps track of resource allocation. When a task needs to run, Ephor
checks to see the different possible techniques the application has provided for this
task, and based on the current resource utilization choses the best one. In defining
the techniques the user provides an ordering. The best one is the best (user
defined) technique that will finish given the current processor load and resource
allocation. For example, suppose there are two different techniques the user has
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provided for executing the save-sheep task. The first runs quickly and produces a
satisfactory choice and the other computes for longer but produces a much better
choice of the next sheep to save. At the moment the task needs to be run, Ephor
will know whether there is time available to run the longer task, and if so, will
run it. If there is very high load on the system at the time the task needs to
run, Ephor will automatically run the quicker task so it and other tasks do not
start missing deadlines. In some real-time applications, such as factory resource
allocation tasks, the goodness value for completing a task decreases over time, so
in addition to the trade-off of completion there is expected completion time. If this
function was input to Ephor, then in addition to or instead of, trading off whether
it would get completed, it could trade off against this diminishing goodness value.
As another more qualitative example consider a case where there are two sensors
on a mobile robot for determining the distance to a wall, an infrared sensor (quick)
and a binocular set of cameras (slow). If, at the moment the robot requests the
distance-to-wall task be run, the infrared sensors are busy tracking a moving
object, then Ephor can automatically run the binocular vision task to get the
requested distance. The beneficial part about this is that the application obtains
the desired information without having to track the resource allocation of the
distance sensors and realize that another portion of the application was using
them. The mechanism is more thoroughly explored in Section 5.2.

2) Schedule tasks using derivative worst case or adaptive scheduling policies.

The scheduler provided with Ephor is discussed at length in Chapter 4. The
key idea is to provide scheduling policies based on observations about real-world
applications. Specifically, Chapter 4 recommends a derivative worst-case schedul-
ing algorithm for programs needing to provide absolute guarantees. This signifi-
cantly outperforms the standard worst-case scheduling for many real-world tasks.
The chapter further argues for using an adaptive scheduling policy such as one
based on statistics of execution times over a previous window. These provide much
higher processor utilization and that frequently translates into better application
performance. In Chapter 4 we analyze the distributions of execution times and
quantify the tradeoffs between the different policies.

3) Dynamically control the placement and quantity of parallel processes.

The idea behind dynamic parallel process control is that an application will
go through periods of lower demand and periods of higher demand based on the
current state of the environment. For a task that can be run in parallel and
adjust the number of processors it uses (see Chapter 2), Ephor can dynamically
increase or decrease the number of processors available to that task. Used in
conjunction with adaptive scheduling mechanisms, allowing the number of tasks
to vary can yield large performance gains. Without the ability to dynamically vary
the number of processors available to a task the worst-case situation would have
to be chosen to apply for all time. Choosing the worst case might be especially
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detrimental if the worst case is based on the infrequent event of several different
parallel techniques running simultaneously. If, however, Ephor can adjust the
processors assigned to the given task, then when the different parallel tasks need
to run concurrently Ephor can assign each fewer processors, and when (say in the
normal case) they run separately, Ephor can allocate to them more processors
allowing them to complete their execution either quicker or better or both. This
mechanism is explored more in Section 5.3.

4) De-schedule all running subtasks associated with a particular task.

Ephor is in a unique position to handle semantically grouped subtasks. This is
because at initialization the application informs Ephor of its program structure. In
particular, it indicates all the subtasks that comprise each technique associated
with a task. If an application determines it longer needs the results of a task,
then Ephor can then de-schedule all the subtasks associated with that task. For
example, consider the shepherding application. If after the application requests
a solution to save-sheep a wolf appears on the field, the subtasks associated with
save-sheep would no longer be needed. In fact they would interfere with the task
needed to respond to the wolf. Because the solution to the save-sheep task is
time dependent (based on the position of the sheep and shepherd at the time the
task was started), there is no reason to suspend the subtasks; if possible, they
should be eliminated. Since Ephor is aware of all the subtasks associated with the
save-sheep task, it can perform this operation.

5) Automatically time tasks and update their status block.

Ephor needs to time tasks to perform many of its operations such as scheduling
or dynamic technique selection. The times are gathered by reading the fine-grain
21ns timer and updating a time value in the header and footer of each task. This
information can be valuable to the application, and Ephor makes it available via
Ephor function calls. In many real-time systems, time information flows in the
other direction, that is, many real-time systems require time as an input. Ephor,
however, provides times for the different tasks to the user. This is in keeping with
Ephor's philosophy of removing from the SPARTA programmer as much of the
responsibility of managing resources as possible.

6) Provide access functions to share information between the runtime and
application.

Ephor needs to track considerable information about resource allocation in
order to perform many of its functions. It also needs to be aware of certain
aspects of the application. It cooperates with the kernel and performs some system
functions (scheduling) thus acting as a bridge between the application and the
underlying system. This communication of information is accomplished via a set
of access functions. These access functions allow the application to inform Ephor
of its program structure, to request scheduling policies for its tasks, to override the
standard dynamic technique selection mechanism, and more. The access functions
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also allow information to be communicated from Ephor to the application. The
application may request the time for a given task, whether (and to what task) a
particular resource is currently being used, as well as current processor utilization.
The application can use this information to guide its decisions about how to
interact with the environment. For example, if the application was contemplating
placing the program in a state of greater demand, perhaps by moving to a more
complex area of the environment, it could check the current processor utilization
and see if there was enough available utilization to perform the expected tasks.

Below is a list of the available functions from Ephor. The first three are
special in that they take a variable number of arguments terminated by a NULL.
To provide an idea of the possible arguments we give a typical initialization call.
For the rest of the functions we provide their library definition. Following the list
is a description of the functions.

ephor-hl-task-t
ephor-create-hl-task (ephorperiodic, True,

priority, 0,
ephorrate, 16666,
NULL)

ephor-t echnique-t
ephor-create-technique (hl_tasknumber,

ephorcpu-time, 16666,

ephor-resource-t, my-resource,
NULL)

ephor-task-t

ephor-create-task(hltasknumber, technique-number,

ephor-function, funct-name,
ephorterm_time, NEVER,
NULL)

ephorresource_t
ephor-create-resource 0

ephor-boolean-t
ephor-resource-in-use(ephorresource-t resource)

void
ephor-run-hl-task (int hl_tasknumb)

void
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ephor-kill-hl-task(ephorhltaskt hltask-numb)

ephorschedpol-t

ephor-set-schedpolicy(ephorsched-polt policy)

ephor-sched-polt

ephor-set-hl-task-sched-policy (ephor.schedpolt policy,

ephor-hltask-t hl.task-numb)

void

ephor-overdemand-handler(ephor-hl-taskt hl-task-numb)

ephor-t ime-t
ephor-get-technique-time(ephor_techniquet, techniquenumber)

ephortimet
ephor-get-hl-task_time(ephor_hltaskt, hl.task-numb)

Upon initialization the user informs Ephor of its program structure via three
calls: ephor-creat e-hlt ask, ephor-create-technique, and ephor-create-task.
The arguments to ephor-create-hl-task allow the user to specify whether the
task is periodic (Ephor will automatically schedule the task at the rate specified
by ephor-rate), and its priority. The return from the function is a "cookie" that
is passed to ephor-create-technique and used throughout the program when
referring to this high-level task. The user can specify a worst-case time for a
technique with the ephor.cpu-time argument. The user can also, specify a list
of resource with the ephor-resource-t argument. Note that Ephor expects a
"handle" returned from ephor.create-resourceo. The final call to establish-
ing the program structure is ephor-create-task. This function expects cookies
from both ephor-create-hl-task and ephor-create-technique, as well as a C
function pointer following the argument ephor-function. The function also al-
lows the user to specify an early termination time'. The final function used at
initialization is ephor-create-resource. It returns a handle to a resource.

The rest of the functions are used throughout execution of the application and
have the following functionality:

e ephor-resource-in-use returns a boolean indicating whether resource resource
has been allocated,

'Currently this is an absolute time, which in some cases is not overly convenient. We envision
that allowing a percentage would also be a useful feature.



104

" ephor-run-hl-task tells Ephor to execute hl-task-numb,

* ephor-killlltask tells Ephor to kill hl-task-numb,

* ephor-set-sched-policy sets a default scheduling policy for all tasks,

" ephor-sethl-task-sched-policy sets a scheduling policy for a specific
task,

" ephor-overdemand-handler provides a handler for Ephor to run in case of

over demand. If no handler is provided Ephor will take the default action
described in 7),

" ephor-get-technique-time returns the time (LI) for technique-number

" ephor-get-hltask-time returns the time (LI) for hltasknumb

7) Detect and recover from overdemand.

Ephor detects overdemand when the amount of time needed to schedule the
requested tasks exceeds what is available as determined by the scheduling algo-
rithm described in Section 4.3.1. Note that this occurs before we have performed
any iterations with the real-time kernel and received a "failed schedule" message.
The ability to detect a failed schedule before submission is a contribution of Ephor
and can be accomplished because Ephor is aware of the program structure. This
avoids the possible problem of the application trying many combinations before
realizing that even its minimum requirements will not be able to be satisfied. In
the case of overdemand, one of several actions are taken. The first is an attempt
to select less expensive techniques for the given set of tasks. If this does not rectify
the problem - the cheapest technique for each requested task is still too expensive
- Ephor will do two things. By default it starts removing the lowest priority tasks
from the schedule until it is able to fit the tasks. It then passes this set of tasks
to the kernel. If instead, the user has registered an overdemand task with Ephor,
then Ephor clears the schedule and calls this task. The expectation is that the
application will choose a different course of action and submit a less expensive set
of tasks.

8) Allow early termination of tasks.

The idea for early termination of tasks is based on anytime algorithms or im-
precise computations similar to Liu et. al. [LLS+91]. Certain algorithms produce
a result after a certain minimum time and then continue improving on that result
until finishing execution. Based on the load in the system a task based on this
model may be halted after the point it has reached an answer though before it
has completely finished execution. In a highly loaded system this allows other
tasks to start running and make their deadlines. Ephor provides support for this
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model by terminating such tasks after the minimum time requested if there are
other periodic tasks that need to be run or if there are other higher priority par-
allel tasks that could make advantage of the extra cycles that would be freed by
termination of the anytime task.

9) Automatically allocate resources based on task priority.

If multiple tasks request a resource, Ephor will allocate that resource to the
task with the highest priority and then will attempt to find another technique to
execute the lower priority task. Among equal priority tasks Ephor will attempt
to satisfy the most tasks. The optimal allocation algorithm is not polynomial so
Ephor uses a heuristic where it marks any contended resources, attempts to assign
other techniques where possible, and then greedily goes through and assigns the
rest of the resources to tasks in order of increasing period. Again this removes
the burden of handling resources from the user. As is true in most of what Ephor
does the user can override the automatic process of selection with a directive that
forces Ephor to use a particular technique with a given set of resources.

10) Provide user-conscious synchronization.

SPARTAs that contain parallel algorithms will need to synchronize. As Chap-
ter 2 indicates to obtain high performance algorithms must allow processes to
come and go throughout their execution. In Chapter 3 we explore the issues in
providing synchronization algorithms that continue to perform well in the pres-
ence of multiprogramming. Next we discuss Ephor's dynamic technique selection
and dynamic parallel process control mechanisms in greater detail.

5.2 Dynamic Technique Selection

5.2.1 Shepherding Simulator

As a reminder, the shepherding simulator is a real-time simulator, not a sim-
ulator of a real-time application: The processor simulating the real world is not
affected by other work in the system. Thus the SPARTA can fall behind the
(simulated) real world. In the simulator each sheep moves at constant velocity
until herded, at which time it chooses a new direction from a uniform distribution
whose mean is the center of the table with range plus or minus 45 degrees. The
shepherd has a finite speed and can affect only one sheep at a time. The goal of
the shepherd is to keep as many sheep on the table as possible. The performance
of this SPARTA is defined as the number of sheep remaining on the table after
having reached the steady state.
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5.2.2 Planners and Choices

The important aspect of this portion of Ephor is how to select between different
techniques for saving a sheep. We use six different combinations of planning
methods and parameters, which, for clarity, we label as six different planners. The
difference between the planners is how long they take to run and how many sheep
are contained when running on an unloaded cpu. The expectation is that the more
resources a task is allocated (including more cpu time) the better its result will
be. Since we use a parallel machine we were able to dedicate one processor to the
planning function, allowing accurate measurement of each planner's performance
with no competing cpu load.

We measure time in simulator ticks. A sheep can travel from the center to
the edge of the table in 100 ticks of the simulator and the shepherd can traverse
the distance in about three and one half ticks. Planner A computes a list of
all the sheep moving away from the table center that the shepherd has time to
reach, sorted by distance from the center, planner A determines the best order
for saving the top four sheep. The value for a particular ordering is calculated by
a combination of number of sheep saved and projected time to save those sheep,
with the number of sheep as a first-order variable and time as a second, i.e., if a
particular ordering saves 2 sheep and another saves 3 then the second is always
preferred. Among the orderings that save an equal number of sheep, preference
is given to the ordering taking less time. Planner A performs the best under no
load but takes the longest time to run (about 2 ticks).

Planner B simply tries to save the sheep farthest from the center. It runs much
faster than A (about 1/80 of a tick) but does not perform nearly as well under
no load since it is really reacting, not planning. The following difficulty indicates
why B does not contain as many sheep as A: if by letting the farthest sheep go, it
is possible to save the next two, A will save the two sheep while B will save only
one. Planners C, E, and F are variants of A but differ in the amount of checking
they do, such as whether the sheep is farthest from the center, or whether it can
be saved. For example, planner C does not insure all the sheep placed on the list
can be saved. Planners C, E, and F run in approximately 1/20 of a tick, 1 tick,
and 1/10 of a tick respectively. Planner D is similar to planner B and runs in
about 1/80 of a tick.

5.2.3 Experiments and Results

To evaluate the effectiveness of dynamic technique selection we compare the
results of using it on several different planners. The planners were run plan-
ners under simulated conditions of parallel activity in other parts of the SPARTA
whereby a controlled load was placed on the processor that the planner was run-
ning on. Since we were using a multiprocessor we could vary the load experienced
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by the planner process without affecting any of the other processes in the system.
We also had tight control over how much load was experienced on the processor
running the planners. The graphs in this section appear in pairs, with each pair
representing an experiment. The line graph on the left always gives performance
for a set of fixed loads, while the bar chart on the right gives average performance
when the cpu load varies during the run.

The first experiment (Figures 5.1 and 5.2) demonstrates the effect of a high
load. Recall that B runs about 160 times faster than A. Planner A should outper-
form B with no load, but more load could mean planner A might not complete its
calculations in time, thus planner B should outperform A under high load. The
loads are plotted on a logarithmic scale, that is load type II is twice as much
as load type I and half as much as load type III. Indeed there is a dramatic
decrease in performance of planner A under higher loads while planner B remains
fairly constant. In a fixed load environment the runtime can choose between the
better of the two planners, thus achieving the best performance in all cases. In
the second half of the experiment the load varied through time. Half the time
there was no load and half the time there was load. When there was a load it was
divided evenly (by thirds) amongst the different load types. Figure 5.2 represents
how A, B, and the runtime mixture perform under varying load.

The next experiment,(Figures 5.3 and 5.4) measures the effect of higher priority
jobs running ahead the planners. This differs from the last experiment, in which
there was equal probability of the planner or the load processes running. For
this experiment we guaranteed that the load processes are always scheduled first.
Recall planner D runs about 4 times faster than C. In the fixed load case we can
see that each planner's performance degrades severely as the time taken by high
priority tasks increases. However, the runtime is still able to select the better of
the two. Under varying load the runtime performs almost as well as planner C
and much better than D.
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The final experiment (Figures 5.5 and 5.6) is meant to approximate most
closely a realistic application environment. This experiment measures the effect
of a light to moderate load on the planner processor. We also expect the decision
between planners will not be extreme, i.e., the planners we use, E and F differ by
one order of magnitude in time requirements. For the fixed load case the runtime
can always select the better of the two planners, yielding top performance. In
the varying case, by dynamically selecting the appropriate planner, the runtime
achieves higher performance than either of the planners.
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5.3 Dynamic Parallel Process Control

Using dynamic parallel process control Ephor allows the application to take
advantage of periods of lesser activity by allocating extra processors when they
are available. As we described in Chapter 2 the application has to be designed
to be able to take advantage of the situation. If it is, Ephor can help it use
extra available processors. Many mechanisms need to come together to make
parallel processor control effective. An adaptable scheduling mechanism should
be employed, otherwise the same number of processors will always be available
and the only difference will be whether Ephor needs to schedule multiple parallel
planners at the same time.

To evaluate the usefulness of a planner and runtime that can dynamically vary
the number of processors we designed a set of experiments and wrote a parallel
planner that can dynamically adjust to the number of processors Ephor allocates
to it. The goal of the planner was to determine the next sheep to save. The input
to the planner is the current model of the world (sheep position and velocity) and
the output is the next sheep to save. The farther the planner projects into the
future, the better the choice will be. However, this future projection is a very
expensive operation because we need to simulate sheep moves for an exponential
number of possible orderings, and thus it requires tremendous computation. To
design an adaptable parallel planner, we have a master compute all the different
permutations of possible sheep n saves into the future. This operation is relatively
cheap. Then, each of the slaves (the master can also act as a slave) computes a
value for a possible ordering of sheep saves. If the value is less than a global
minimum it updates (via obtaining a lock) the best current ordering and value.

We ran three sets of experiments to determine the potential benefit gained from
being able to take advantage of additional processors when they become available.
The difference between each of the experiments was the rate at which the sheep
moved. Within each experiment we varied the maximum number of processors
that would be available to the parallel task. At each available processor count
we randomly chose the number of processors that would be available to run the
parallel task this execution. To best simulate actual conditions, 50 percent of the
time the maximum were made available, and the other 50 percent of time was
divided evenly among the remaining possibilities. For example, the percentages
used to obtain the application performance when 6 processors might be available
to the parallel task would be 6 processors available 50 percent of the time with 5,
4, 3, 2, and 1 processors being available each 10 percent of the time. The results
in Chapter 2, Section 2.4.2 are similar to these except taken only at one point
(7 processors available) and without varying the number throughout execution.
Figures 5.7 through 5.9 show the results of the experiments. Remember, the
comparison is between a planner that cannot adjust the number of processes it
uses and thus is locked into using only one versus a planner that can use more
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processors when they become available. The important aspect of this discussion
is not that parallel planners (versus sequential ones) can improve the performance
of applications, rather, that in real-world applications we need parallel planners
that can dynamically vary the number of processors they use. Equally important,
we need a runtime such as Ephor, that can support this desired behavior. The
ability to adapt is most important in high demand situations as witnessed by the
greater difference between the adaptable parallel planner and the fixed parallel
planner in Figure 5.9 versus Figure 5.7. However, in all cases there is a significant
improvement in performance for planners that have been written to use extra
processes when they become available.
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5.4 Mechanisms Conclusions

The primary purpose of many of the mechanisms we described in this chapter
was to provide flexibility to the application to allow the SPARTA to adapt to a
dynamic world. We listed and described ten mechanisms that allow the system
to be adaptable. In a previous chapter we examined in detail the scheduling
mechanisms, and in this chapter we more thoroughly examined both dynamic
technique selection and parallel process control showing the benefits of allowing
programmers to have access to mechanisms designed to increase the adaptability
of their application.
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6 Shepherding: An Example
Application

6.1 Introduction

We have indicated in previous chapters that the results presented were from
our real-time shepherding simulator. This allowed us greater control in our ex-
periments when testing the implemented mechanisms. Since it was a real-time
simulator (not a simulation of a real-time application) it allowed us to explore
real issues that occur in designing SPARTAs. However, designing real-world ap-
plications involves coordinating many pieces of hardware and integrating multiple
software components. Thus, unforeseeable or hard-to-model issues often arise
when incorporating real-world sensors and actuators into an application. For that
reason while we developed Ephor (and our real-time simulator) we also imple-
mented a real-world shepherding application in our robotics laboratory.

In this chapter, we describe the underlying hardware, including the camera,
vision processing boards, processors, and puma robot arm. We then discuss the
software components we designed to integrate the hardware components in real-
time. At each stage we describe the trade-offs between the different possibilities
and why the ones chosen were best suited for our environment. We also present
results supporting our selection. At appropriate points we indicate underlying
support provided by Ephor that eased and improved our implementation.

6.1.1 The Shepherding Application

The real-world implementation runs in our robotics laboratory [BB92]. As a
reminder, it consists of self-propelled Lego vehicles "sheep" (see Figures 6.1 and
6.2) that move around the table "field" (see figure 6.21) in straight lines but
random directions. Each sheep moves at constant velocity until herded by the
robot arm ("shepherd"), at which time it is redirected back towards the center
of the field. The shepherd has a finite speed and can affect only one sheep at
a time. Figure 6.3 illustrates the different hardware components involved in the
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shepherding application. The goal of the shepherd is to keep as many sheep on
the table as possible.

Figure 6.1: Side view of a Lego Figure 6.2: Top view of a Lego
sheep. sheep.
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Figure 6.3: A flow diagram of the shepherding project.

The shepherding application is flexible and representative of a large class of
applications. It includes high level cognitive models of the real world, planning,
searching, sensing, acting, active perception, focus of attention, and multiple goals.
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It contains situations in which overdemand can occur as well as the need for quick
allocation and deallocation of resources. The shepherding application allows us to
investigate many interesting properties of real-time systems that occur singly or in
combination in other applications. Other real-world applications like navigation,
game playing, laser tag, purposive vision, package delivery, and automated RSTA
devices have properties similar to the shepherding application. In varying degrees
all contain an element of search whereby the agent determines the next course of
action. Most are designed around a high-level executive instructing lower levels
to carry out actions. The executive reasons and makes decisions using a model of
the real world. Its requested actions are interpreted by lower level's modules and
translated before being carried out. Many contain an intermediate layer respon-
sible for small corrections to the requested action (servoing). Many also contain
a low-level survival layer whose actions need to be carried out constantly and
can occur "subconsciously", i.e., without intervention from the higher levels. The
shepherding application includes all of these properties. It uses various search
algorithms to determine the next sheep to save. The planning code is a high-level
executive working with models of the real world, sending out instructions to lower
layers. The shepherding application's lower level interprets the requests from the
executive (such as "deflect sheep at x,y"), and carries them out. An intermediate
layer is employed to correct open-loop instructions by the executive. In the shep-
herding application this may mean fine adjustments to ensure the manipulator
actually deflects the sheep even if the specified time or coordinates are slightly in-
accurate. The shepherding application also contains low-level vision sensing that
is constantly tracking the sheep. This occurs without the executive requesting
it. Thus, the shepherding application embodies the important properties of many
applications.

6.1.2 Real-Time Aspects

There are several crucial components involved in implementing the shepherd-
ing application: a real-time control component integrating the various modules, a
vision module allowing tracking of the sheep, a communication module allowing
the different machines to communicate across the ethernet, a manipulation mod-
ule controlling the robot, and (for the user's convenience) a display module for
debugging and tracking the application's progress.

The real-time control ensures each process runs at its specified intervals. In
designing the modules to be used in the real-world shepherding special constraints
needed to be satisfied. For example, often in the vision community separating an
object from a scene could take several seconds per object, yet for real-time tracking
we needed to track multiple objects many times a second. As another example,
in the planning portions we needed to be able to place bounds on the time needed
to make a decision. These examples provide insight into the difference between
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solving problems in real time versus off line. There are other requirements of the
shepherding application, such as the need for high resolution object detection,
that are discussed in detail in the appropriate sections.

6.1.3 Overview

Coordinating the different pieces of hardware with the software components
requires an understanding of the requirements of both the underlying hardware
and its associated libraries. Section 6.2 presents the details of the different hard-
ware and associated software packages used to develop the real-world shepherding
application. In Sections 6.3, 6.4, and 6.5 we carefully discuss implementation
and tradeoffs of our application. Specifically, Section 6.3 presents the coordinating
real-time component of the system and briefly describes the different processes and
their functionality. Section 6.4 discusses the specific vision requirements needed
by real-world shepherding, our solution to the problems, and the tradeoffs con-
sidered during implementation. We also discuss the algorithmic considerations
of performing real-time multi-object object detection and tracking in Section 6.4.
Section 6.5 concludes the implementation section discussing the difficulties and
solutions of performing real-time manipulation. We discuss the capabilities of the
application and make concluding remarks in Section 6.6.

6.2 Specifics of the Hardware and Software

This section contains detailed information about the hardware and software
used to develop the shepherding application. The code segments that appear
are not crucial in understanding the shepherding application, instead they are
presented for the reader interested in specifics. They also illustrate additional
difficulties encountered in real-world applications that do not exist in simulation.
Since they are not extensive and fit well in the flow, they are in-lined in the ap-
propriate section. The first two sections, 6.2.1 and 6.2.2, are specific to the twelve
processor SGI Challenge Series that we attached the vision processing boards,
and may be of interest only to readers with such platforms. The remaining sec-
tion, 6.2.3, contains information on timings and board interconnections resulting
from the configuration of Maxware boards we used.

6.2.1 Maxware Code Modifications

The Maxware software was originally written for a Sun workstation and had
to be ported to the MIPS based SGI multiprocessor running IRIX. Below are the
difficulties encountered during this port and the solutions we found. The solutions
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are the most straightforward to the problems that presented themselves and not
necessarily the most elegant. It is also possible that some of the problems do not
exist in current versions of IRIX, but these were the difficulties that arose when
porting to IRIX 5.0.1.

The first set of problems encountered were the incompatibility of makefile for-
mats. The makefile on the sun defaults to running /bin/sh. IRIX defaults to run-
ning the shell of user executing the makefile. Thus the line "SHELL = /bin/sh"
was added to the top-level makefile. On our version of IRIX, the default compile
was "ansii", but the software was not written with these conventions in mind. To
handle this difficulty, a "-cckr" was added to all "CFLAGS" options. In many
of the makefiles the "OFILES" definition was defined using the "FUNCS" defini-
tion, which was a combination of "CFUNCS" and "OBJSUF". When the makefile
program was combining and substituting other definition to form "OFILES", it
was not obtaining the proper list of object files. To solve this, the "OFILES" def-
inition was defined by individually listing out each object file. When the makefile
invoked ranlib numerous errors resulted. There was an incompatibility between
the formats of the object files and what ranlib was expecting. After unsuccessfully
deciphering the message, we simply added a empty executable ranlib to the end
of our $PATH variable thus bypassing the creation of the table of contents for the
archive.

There were other errors requiring only minor changes:

* In the dcLutInit.c file in the dc subdirectory for loops with the start condi-
tion of "i=-128" were modified to "i=(-128)"

* In the mvAlloc.c and mvPage.c files in the my subdirectory the following
lines were added to correctly define the "PROT-EXEC" constant:
"#ifdef sgi; #define PROT-EXEC PROT-EXECUTE; #endif"

" In the mvControl.h file in the include subdirectory the definition of "in" was
changed to 'm'

* In the msTool.c file in the mains/tools/maxsp subdirectory the variable
const was changed to _const_

* In the Mdepends.bsd file in the dc subdirectory the "$(FUNCS): $(INCS)"
line was commented out

" In the setecho.c, clrecho.c, setcbreak.c, and clrbreak.c files in the parser sub-
directory the initializing declaration of "static struct termio tty = 0;" was
changed to the simple declaration of " static struct termio tty"

" In the roiCalc.c file in the mains/roicalc subdirectory an "#ifdef sgi" was
added for the System dependent constant variables that matched the "#ifdef
sun"
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/* entry allowing VME space to be mapped in

specifically for the DigiColor and ROIStore boards */
#if IP5

{ VMEA24SSIZE, PHYSTOKl(VMEA24SBASE), },
{ VMEA32NPSIZE, PHYSTOK1(VMEA32NPBASE), },

#endif

Figure 6.4: Code added to kernel to allow it to map in VME space

if ((int)(roimem.ptr =

mmap((caddr-t) 0, Ox80000, PROTREADIPROT_WRITE,
MAP-SHARED, fd,

Oxc8OOOO+PHYSTOK(VMEA24SBASE))) == -1) {
perror("unable to perform mmap for ROIStore on /dev/mmem");

exit(1) ;}
if ((int)(dc-memptr =

mmap((caddrt) 0, Ox80000, PROTREAD IPROTWRITE,

MAP-SHARED, fd,
OxeOOOOO+Ox4OOOO+PHYSTOK(VMEA24SBASE))) == -1) {

perror("unable to perform mmap for DigiColor on /dev/mmem");

exit(1) ;}

Figure 6.5: Code establishing pointers to VME space for direct access of boards

These changes were sufficient to compile all the code and successfully run the
code for the DigiColor and ROIStore boards in "POLLED" mode.

6.2.2 Kernel Modifications

The Maxware code was originally ported to the IRIX 4.0.3 operating system.
This version of the operating system did not contain any VME drivers so a method
had to be found that would allow access to the DigiColor and ROIStore boards
on the VME bus. There was a mem file in the uts/mips/master.d subdirectory
that defined an array of device addresses mappable by the /dev/mmem. The
addresses must be kernel virtual addresses, not physical addresses. We treated
the DigiColor and ROIStore boards as devices and specifically indicated in this
file that it was valid for the kernel to map in this space - it just happened to be in
VME space. The addition to the mem file shown in Figure 6.4 allows the boards
to be mmapped with the code in Figure 6.5.
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6.2.3 Digitization and Access

As can be seen in Figure 6.3 we used a color camera that was connected to
a DigiColor board capable of digitizing an image into several different signals.
The DigiColor board can produce a composite signal, a monotone signal, a RGB
signal, and others. Our goal was to choose a background, objects, and signal
that allowed for easy object detection; we were not attempting to solve a vision
recognition problem. We did however, want to design a realistic problem, and
decided not to place a high intensity point source of light on the objects. Instead,
by choosing an appropriate background we could use a threshold to determine if
a particular pixel was part of an object. As mentioned the sheep are constructed
using off-the-shelf Lego pieces. While we had eventually planned to design a cover
or "wool" for the sheep, we wanted to be able to also detect the standard Lego
objects. For each of the possible output signals the DigiColor can produce, we
took a histogram of the pixel intensities. We wanted to determine empirically the
signal that produced the sharpest and furthest spread peaks for the background
versus the object. The best results were obtained by using the green digitized
signal produced by the DigiColor in RGB mode and treating it as a monochrome
signal. Although a slightly sharper distinction could be made by adding the red
and blue signals, this would have required additional cycles in transferring the
digitized image between the DigiColor and ROIStore boards.

We determined that the thresholding can work under significantly different
lighting conditions assuming that the program is appropriately initialized. Initial-
ization is accomplished by obtaining a histogram of the pixel intensity values for
a particular lighting condition and choosing a threshold value. The first threshold
value we tried was the midway between the peaks of the background and objects.
While this provided a reasonable value, through experimentation we discovered a
value eighty to ninety percent nearer to the edge of the object peak provided for
less noise around the perimeter of the objects.

There are several different methods of accessing the memory in the ROIStore
and DigiColor boards. The Maxware primitives provide functions for accessing
pixels individually or in blocks. Also by using pointers initialized as in Figure 6.5
we could circumvent several layers of maxware code and access the memory in
the ROIStore directly over the VME bus. This technique yielded a factor of three
increase in access time when accessing individual pixels. We further determined
that in order for the block accessing maxware primitives to outperform our direct
access method, it was necessary to access on the order of 10000 contiguous pixels.
These pointers could also be used to access an image plane in the DigiColor
memory that could be used to create overlays for images. This allowed us to
display computer representations of the objects directly on the monitor displaying
the actual image, and was useful both in debugging and observing the program.
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6.3 Decomposition and Real-Time Control

In designing any large program, it is important to consider the software en-
gineering aspects as well as the actual programming. An additional problem in
implementing a real-world application is ensuring the individual modules are pro-
grammed so they run quick enough and are scheduled within the required time
window. In this section we describe the module decomposition and the user-level
scheduler we designed using IRIX real-time primitives to yield the desired behav-
ior.

There were many hardware components used to implement the shepherding
application. Figure 6.3 illustrates the connections between them. We used a
PUMA robot arm to manipulate the sheep on the table. Control of the arm
requires a software package called RCCL [LH92] that runs on a Sparc workstation.
While we could have connected the vision processing boards to the VME bus on
the same workstation and run all the vision processing, planning, display, and
other functions on that same workstation, there was considerable motivation to
implement all but the RCCL control on a more powerful SGI multiprocessor.

The decision to use the SGI was based in part on the realization that the vision
processing portion required both intensive computation and extensive access to
the ROIStore board on the VME bus. The SGI Challenge series with R4400 chips
clocked at 100 MHZ and a 1.2 GByte bus, provided both fast processors and
a fast bus. In addition to the increased power of the SGI, as mentioned in the
introduction, we were interested in using the shepherding application to study and
verify the issues involved in designing parallel real-world applications. Therefore,
the vision processing boards were placed on the SGI. The goal was to place all the
code possible on the SGI requiring as little as possible of the Sparcstation. All
the vision processing code, the planning code (including where to send the robot
arm), and the display code, was implemented on the SGI. Since the RCCL software
needed to run on the Sun workstation, a method of communication between the
Sun and SGI was required. The SGI performed the majority of the computation
and simply sent desired robot arm coordinates to the Sun. This placed as little
of a burden on the Sun as possible. All the Sun workstation needed to do was
to perform a transformation between the image coordinates sent by the SGI and
the robot world space, move the arm, and send back confirmation of success or
failure.

The task running on the Sun workstation was straightforward: an infinite loop
was set up to wait for a command from the SGI, perform a robot move, and send
confirmation. On the SGI however there were many software modules that needed
to be meshed. The module that coordinates and schedules the processes on the
SGI is our user-level scheduler. It was designed in order to try new techniques
and interactions between Ephor and the scheduler both rapidly and without ker-
nel modification. After describing our user-level scheduler and the salient aspects



121

of Ephor, we provide a description of the different modules comprising the shep-
herding application. The vision and manipulation modules receive more detailed
treatment in later sections and thus are only briefly described here. Since the
shepherding application ran on a multiprocessor, each module was given an in-
dividual processor. While highly cpu intensive modules (the vision processing
and planning modules) could be parallelized as in our simulator, we found the
real-world bottleneck was in the robot and communication, thus each module was
assigned only one processor.

6.3.1 User-Level Scheduler

The user-level scheduler allowed Ephor to control the placement and timing
of the tasks. In turn Ephor provides the user with a clean interface allowing easy
specification of when and how frequently to run a particular task. In addition
Ephor interacts with the user-level scheduler providing dynamic task selection,
parallel process control, and more mechanisms for the SPARTA programmer.

It is necessary to have cooperation between the tasks and the user-level sched-
uler in order to simulate a real scheduler. The code for this functionality is placed
in a header defined by a macro. Providing this macro removes responsibility from
the user for providing the cooperation between Ephor and the user-level scheduler.
All each task needs to do is to place a BEGINPROC (see Figure 6.6) statement at
its beginning. BEGINPROC is a macro allowing the user-level scheduler to place
this task on a specific processor at a given time. Combined with the ENDPROC
(see Figure 6.7) it allows for very precise timing.

The BEGINPROC macro sets each task into an infinite loop with a blockproc
statement at the beginning followed by the code for the work. Blockproc causes a
particular process to block until an unblockproc command is issued. The processes
should be thought of as light-weight threads as they share address space and
differ only in necessities such as the program counter, stack space, etc. After
initialization a set of processes are created, one for each of the tasks. They have
each executed the blockproc command appearing in the macro header. When the
user-level scheduler needs to run a particular task it unblocks the (light-weight)
process associated with that task.

Additional code in the BEGINPROC macro allows the user-level scheduler
to also have control over the processor the task runs on. Each task (via code
in the macro) executes a sysmp(MUSTRUN, proc[my.id]) command. The task
executing this command runs on the proc processor specified by the user-level
scheduler. The array proc is set by the user-level scheduler for each task and can
be changed dynamically. Another concern was getting accurate timings for the
different tasks for scheduling purposes. The clock provided by the SGI only gave
ten millisecond granularity for standard processes. While millisecond granularity
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was available to higher priority tasks, they are non-preemptable and we wanted
the ability to allow the user-level scheduler to block tasks. An extremely high
granularity clock was established on a distinct processor by using a shared variable

and continually incrementing it. This provided 121 nanosecond resolution and was
accurate to under one percent. All tasks were timed by checking this value in the
BEGINPROC macro of the task and rechecking it in the ENDPROC macro.

There are still more subtleties in ensuring the above mechanisms behave as
expected. To guarantee the desired behavior, some additional IRIX real-time
primitives were used. The processors were restricted (sysmp(MPRESTRICT, i))
to running only the processes that had been assigned to them by the user-level
scheduler. To ensure the tasks ran in the correct order the priorities associated
with the processes were modified appropriately by a method similar to determining
the processor to run on. The scheduler also had to track the execution times of
the tasks and ensure that it placed only those that could run in the allocated time
period.

The important aspect of Ephor and the user-level scheduler from the appli-
cation programmer's perspective is the ease with which the user can specify tim-
ing constraints and priority concerns, and the increased performance achieved by
Ephor's automatic mechanisms. The user calls initialization routines indicating
whether that task is to be run periodically and its rate (e.g. for the object finding
task) or whether it will be run in response to an environmental stimulus (the
manipulation task).

6.3.2 Display Process

The display process was created primarily to provide a nice user interface
allowing the programmer to view the computer's representation of the real world.
This allowed both easier debugging and easier development. The interface also
allows the user to control some of the actions of the application, e.g., whether to
track objects to find them or scan the whole image to find them.

The display process starts by opening an X window with a portion of the win-
dow for displaying sheep positions and another portion containing action buttons.
When blobs appear in the real-world scene, the display process obtains their im-
age positions and displays them in the window as a circle. The area of the circle
matches the area of the blob as found by the vision processing task. As the blobs
move, their locations in the X window also move.

The X window can be used to control the computer program. One of the
buttons appearing in the X window is a scan button. This effectively pauses the
vision processing algorithm, i.e., it no longer searches for blobs in the image. This
allows the user to enter the image and move objects around. Also as part of this
mode, the user can move a computer generated box around the monitor displaying
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the image. This is useful in performing the initial robot calibration, where it is
necessary to correlate points in the image to points in the robot's space. Other
buttons include a pair indicating whether the program is currently tracking images
and performing a perimeter search (trackify option) or whether. the computer is
trying to find blobs in the entire image (blobify option). Other options include
whether to perform a full scan of a blob or just an axis scan. There is also a
debug button allowing information (e.g., variables) to be dumped to the screen.
This can be used to actually find a bug in the program or just a quick method
to print out transient information about the objects. The details of these options
and tools, and the tradeoffs and usefulness of some of them will be discussed in
later sections.

6.3.3 Communication Process

There is communication between the SGI program and the robot control pro-
gram on the Sparcstation. Communication is set up with sockets allowing trans-
mission of short messages containing target image points and the verification of a
robot move. A separate process is used since socket communication is a bottleneck
in the system. If the communication process were joined with the planner process,
considerable planning time would be lost while waiting for message replys. By
spawning off a separate communication process, the system is allowed to continue
processing visual input and planning intercepts while waiting for communication
to complete.

When the communication process is first started, it has the robot control
program (running on the Sparcstation) perform all necessary initialization. After
initialization, the communication process spins in a loop waiting until the planner
has decided on a robot manipulation. When a target position and manipulator
orientation for the robot has been planned, the communication process sends the
target and orientation to the Sparcstation for processing, and waits for a reply
verifying the arm movement. Upon confirmation, the communication process
notifies the planner process, via a flag, that the motion is complete. It then waits
for the next robot position to send.

6.3.4 Planner Process

Determining the next sheep to save can take up a considerable amount of time
depending on the strategy employed. It is possible to imagine a broad spectrum
of possibilities ranging from picking the first sheep found moving away from the
center, to exploring all possibilities of the next n sheep to save (exponential). One
of the mechanisms in Ephor allows a user to program many different possibili-
ties and will automatically and dynamically select the most appropriate one at
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runtime. Unfortunately with the hardware in our laboratory this decision was
relatively uninteresting because we could not physically get that many sheep on
the table. (The puma arm we have is slow and has limited reach). However, this
did bring up other tradeoffs based on the limitations of the robot arm, e.g., it had
problems reaching one corner of the field so it was best to herd sheep away from
it earlier than for the other corners. Another difficulty in the laboratory was the
fact that the robot was extremely slow in comparison to the processors, allowing
considerable computation for each manipulation move. We still did investigate the
tradeoffs between the planner described above and one that exhaustively searched

the entire space.

The real-world shepherder has two versions of the planner: the single sheep
version and the multi-sheep version. Both are described in the following para-
graphs.

The single sheep planner is designed to restrict the motion of a single sheep.
When the sheep is spotted, an intercept point is found on the field boundary,
the robot positions itself at the intercept point in the elevation plane (a plane
far enough above the field to allow free movement of the robot arm) with the
manipulator oriented to catch it, and then the manipulator is lowered to the ob-
ject plane (the plane of the field). The intercept point is calculated by using
our simulator to project the sheep movements into the future. Until the sheep
reaches the intercept point, the position and orientation of the manipulator are
corrected to compensate for slight changes. This is accomplished by by continu-
ously monitoring sheep and robot position as they approach each other. When
the sheep reaches the manipulator, it is reoriented toward the center of the field.
Finally, the manipulator is removed from the path of the sheep and placed in a
location such that the arm will not obscure any of the field (it is placed in the
lower right corner). This planner process is currently very simple but is sufficient
to contain one sheep. It allowed us to verify that the other hardware and software
components functioned as required.

To contain more sheep, a more complicated planner is required. First, a sheep
that needs to be saved is chosen according to the following criteria: 1) it will leave
the scene sooner than any other sheep, and 2) it is not already headed toward
the center of the scene. If no sheep fits the conditions (no sheep need to be saved
yet), then the arm moves to the lower right corner of the scene to prevent sheep
from being obscured.

Second, an intercept is calculated according to arm position and velocity, sheep
position and velocity, and a delay long enough to allow the arm to move from the
elevation plane into the object plane. If the intercept is outside the field, or if it
intercepts the expected location of a second sheep, then the first sheep is ignored
and a new sheep is considered for rescue.

Third, after the intercept has been accepted, the arm is moved to that location
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in the elevation plane. Once the move has been made, the intercept is rechecked
to ensure no sheep are directly under the arm (it is possible that before the arm
moves no sheep other than the target will be at the intercept, but during the
move two sheep could collide directing a sheep to the intercept point). After the
second intercept verification has been made, the arm is lowered into the object
plane (directly over the target sheep), the sheep is redirected toward the center
of the scene, and the arm moves into the elevation plane.

Finally, this process starts all over again by either going to save another sheep,
or moving to the corner of the scene if no sheep currently needs to be saved.

6.3.5 The Vision Process

The vision process performs a search on the image data for groups or blobs of
pixels indicating the positions of the sheep; this is known as the blobify routine.
The vision process is run at a specified regular interval and controlled by the
scheduler process. The vision process is run 20 times a second, so the blobify
routine must be fast enough to complete once during every interval. As described
later, we needed a high scan frequency to meet the constraints placed on the
real-time vision processing portion by the shepherding application.

6.3.6 The Manipulation Process

The manipulation process resides on the Sparcstation controlling the robot
arm. It is sent an arm position and manipulator orientation specified in image
coordinates. First, the manipulation process converts the image coordinates into
robot world coordinates (this calculation is described later). Second, it makes sure
the desired speed is possible. This is not straightforward since speed is specified in
Cartesian coordinates (pixels per second and radians per second), while the arm
speed is constrained by the six independent joint velocities. The check is done by
performing inverse kinematics to calculate new joint positions. Then each joint is
checked to make sure none exceeds its maximum velocities. If a joint velocity will
be out of bounds, then the overall speed is reduced to allow the arm to perform the
movement. Once the arm speed is verified, the move is made and the manipulation
process sends a message back to the SGI verifying the new position of the arm.

6.4 Vision

Detecting and tracking moving objects in the real world places a set of tim-
ing constraints on the vision processing portion of an application that differ from
standard vision processing. Additionally, the shepherding application requires
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very accurate velocity. To satisfy the real-time constraints, the vision processing
algorithm must execute both quickly and be predictable from execution to exe-
cution to allow the scheduler to calculate a suitable interval. For example, if the
processing time spent on finding objects varied significantly, then that portion of
the algorithm may not finish in the expected interval causing stale data to be
used and thus invalidating the velocity prediction portion of the algorithm. The
calculated velocity is used in the shepherding application to predict where the ob-
ject will be many (perhaps one hundred) steps in the future. Thus, in addition to
tracking the current position of the objects, it is very important in the shepherd-
ing application that an accurate velocity be provided to the a - /3 filter since any
error in velocity will be multiplied many times as the future position is predicted.
To obtain an accurate velocity we need to maintain a high resolution image, i.e.,
subsampling yields less accurate positions and thus less accurate velocities. In
the shepherding application there are many objects (sheep) that could be in the
field simultaneously. It was necessary to track multiple objects and to associate
blobs in the present image with objects from the previous images (we use blob
for a incoherent group of pixels and object for a processed coherent group). It
was also possible that some of the objects would be obscured for variable lengths
of time. It was therefore necessary to develop an algorithm capable of handling
obscured objects. The vision portion of the shepherding application needed to be
able to track multiple objects rapidly, run with small time variation, and be able
to produce very accurate velocity prediction.

We present an overview of the vision algorithm here and describe each phase
in more detail in the upcoming sections. The first stage in the algorithm is to
determine where the blobs are. Blobs represent probable objects. Once these
have been obtained it is necessary to associate the blobs with objects. In many
cases this is a fairly simple operation since using a high scan rate prevents the
objects from shifting significantly between snapshots. However, it is possible
that due to object collisions or an object being obscured this initial match is
not successful. To handle these situations, obscured objects are given projected
positions and "tracked" while "new" objects are remapped onto the old expected
objects. After a complete pairing has been accomplished the object positions are
used to calculated a preliminary velocity. This velocity however is noisy due to
the very noisy movements of the sheep and the noise associated with the camera.
The velocities are passed through a double a - /3 filter with distinct parameters
and different sampling rates for each filter. The output of the second filter is
taken to be the "true" velocity and the data structure associated with that object
is updated. This velocity can then be used to predict future positions of that
object.
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6.4.1 Blobify

The first stage in the vision algorithm is to group the pixels above the threshold
value into blobs. This blobification process is simplified because we used a solid
background with a pixel value lower than that of the objects. The actual objects
(sheep) we used are displayed in Figures 6.8 and 6.9. As mentioned earlier, the
object finding algorithm worked on the uncovered sheep. There were, however,
two strong motivating factors for providing "wool" for the sheep. The bare Lego
sheep provided for non-elastic collisions that tend to clump sheep throughout the
field making for an uninteresting shepherding problem. The jagged edges and
wires produced an additional source of noise (the number of detectable pixels had
a much higher variance). Further, the appearance of bare Lego sheep is extremely
susceptible to variations in lighting conditions due to the shiny surfaces of the
pieces. The wooly sheep provided a more consistent size under similar lighting
conditions in different portions of the image and were also more consistent across
different lighting conditions. Our motivation in placing the wool on the sheep was
to allow us (when implementing our real-world application) to focus on the real-
time tracking and real-time association problems rather than the object detection
problem. Should the need occur to track natural, the simple thresholding function
would be replaced with a suitable object detection function.

Blobs are searched for in a 512 x 482 image stored in the ROIStore memory as a
one-dimensional array after being digitized by the DigiColor. Blobifying the image
can easily be the most time consuming stage since each pixel must be referenced
over the VME bus. It was at this stage that we had to utilize intelligent algorithms
that differed from standard vision processing ones. We needed to blobify the entire
image quickly and at high resolution. Our goal was to be able to process the entire
image at a rate between twenty and thirty Hertz. To reference every pixel in the
ROIStore required .8 sec. Even performing a bcopy from VME space to main
memory of the image required .3 sec, plus the time to access them from memory.
Clearly it is not possible to examine every pixel, or even a significant 'percentage
of them, and meet a twenty Hertz constraint. We therefore developed a two phase
examination of the pixels.

Conceptually the algorithm is broken into two phases. In the first phase we
perform a very sparse subsampled search. We use information about the size of
the blobs and try to make the search in this phase as sparse as possible without
missing a sheep. The object of this phase was to produce plausible locations for
blobs. A sparse two-dimensional shadow array (a sample one is shown on the
left side of Figure 6.10) of the actual image is kept in main memory and upon
identification of a possible object a cell is marked. A true value in the shadow array
indicates a possible blob for expansion in the second phase(the X's in Figure 6.10).
The X's in Figure 6.10 indicate cells in the sparse array that would contain a pixel
above threshold. Notice that an X occurs in the sparse array only if there is a
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corresponding pixel in the image that would be in that cell.

The second phase involves performing a high resolution search on the pixels in
the actual image corresponding to those marked in the shadow array in the first
phase. The goal is to determine the centroid of the blob in both the x and y axes.
This will be used as its position to calculate velocity and then will be passed
through a double a - /3 filter. There are several possible methods to perform
a search. One algorithm is based on the simplifying assumption that the blobs
are close to circular. The first step in this algorithm is to scan up and down
from the original point. The algorithm performs a scan in each direction until
it determines, by pixel intensity value that it is at the end of the blob. This
obtains a first preliminary vertical line as shown in circle 1 of Figure 6.11. A
center point is determined for the vertical line and a horizontal scan is performed
in each direction, again until the end of the blob is found. This operation finds the
horizontal diameter of the blob (see circle 2 of Figure 6.11). As a check that the
blob was shaped close to expected (a circle) a third vertical scan can be performed
as in circle 3. If the ends of the blob are approximately the same distance away
from the horizontal diameter, then the center of mass is the point at which the
two diameters cross. It is possible that in performing the check the algorithm
determines the blob was not circular.

In many cases, as was true for our shepherding, the circle assumption could not
be made. Even though the spots on the sheep's wool were circular (Figure 6.8),
they could become obscured. While becoming obscured, the spot loses its circular
shape. We performed experiments and determined that even with reasonably slow
moving sheep and a slightly faster robot arm, this effect could throw the estimated
velocity off by up to a factor of five (making making simulated movement into the
future impossible). This is because the center of mass changes much more rapidly
as a blob is becoming obscured. It may well also be the case the image being blob-
ified does not consist of circular blobs. To handle non-circular blobs, a recursive
search of all the pixels in the blob is performed about the point corresponding to
the one in the sparse array. Since speed was of primary concern, rather than us-
ing function recursion we implemented a stack of pixels and performed the entire
recursive search with one function call. A step is made in each of four directions
until the end of the blob is encountered. A cumulative total of x and y values and
number of points was kept. After the entire blob has been explored the x and y
sum is divided by the number of points to determine the x and y centroids.

In reality, as an optimization, the phases are combined. As soon as a pixel
is found in the sparse scan, we pause phase one and perform a high resolution
scan about this point. After the blob is explored in the high resolution image the
corresponding cells are marked as invalid (do not expand) in the sparse shadow
matrix as in Figure 6.10. This eliminates having to check to make sure duplicate
objects are not produced. It also eliminates extra references to pixels in the
ROIStore, i.e., if the stages were not combined there would be many more forward
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examinations of each possible hit in the sparse array. The result is a high resolution
blobify routine that runs very quickly due to a reduced search space and a fast
interactive version of a detailed, recursive, search function. When the blobification
process completes, an array of blob positions denoted by x and y centroids has
been updated.

Instead of searching for blobs in the entire image, an optimization is possible
if we assume objects can only enter the field from the perimeter (sheep can't fly).
We will call this algorithm trackify since it involves looking for object based on
where they were in the last image. The center of each object is used as the initial
point in the sparse matrix and a high resolution scan is performed using it as
the origin. Then a general scan, as previously described, is performed around the
perimeter. For this to be valid the objects cannot move more than the distance
equal to their radius between frames, otherwise the initial point (the center of
the object from the last image) will not be part of the blob. This is a reasonable
assumption. In our case sheep moved two or three pixels a second and their spots
were about sixteen pixels in diameter. We scanned at 20Hz. Thus, we had about
80 images before the center of the blob would no longer be a point anywhere in
the blob.

Driving the hardware at this rate is challenging. The DigiColor can digitize
half (every other line) the image at 60Hz. Thus a complete new full image image
is available at 30Hz. Trying to synchronize the algorithm with the scan rate (by
checking appropriate flags) and the rest of the code may not have been doable at
20Hz. Instead, we perform a continuous scan disregarding where the DigiColor
is in writing the image. This could produce a situation where garbled data was
being used if we happened to be reading in the area the DigiColor was writing. To
avoid this difficulty we scan backwards in ROIStore memory while the DigiColor
writes the digitized image forwards. In this way, the possibility of accessing pixels
being written is minimized and the area of potential overlap is reduced to a few
pixels.

The difference between performing a trackify and blobify operation can be sig-

nificant. As illustrated in Figure 6.12, there can be a significant difference between
performing these two operations. The sampling rate indicates the ratio between
the sparse matrix and the actual image. For example, a sampling rate of eight
indicates every eighth pixel was examined in the first phase of the algorithm. The
numbers in the table were gathered performing a high resolution recursive search
with six blobs in the image each with of diameter of approximately sixteen pixels.
Performing the full high resolution scan versus making the circular assumption
adds only about .3msecs per blob or 1.8msecs for the numbers in the table. Since
this number is small we always perform the full search when blobifying in the
shepherding application.
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6.4.2 Associating Blobs with Objects

The next step is to associate blobs with objects (sheep). Blobs are associated
with objects for several reasons. The planner requires velocity estimates as well
as position estimates. A blob is only a snapshot in one image. Storing consecutive
positions in an object structure allows continuous velocity estimates to be obtained
by using a filter. This is important because at any time the planning process may
need to know the position and velocity of a particular sheep. There are, however,
difficulties that arise with attempting to provide continuous positions to the filter.
When the robot arm moves over a sheep the sheep becomes obscured and a blob
is no longer reported for that object. If the blob was being stored as an object we
can continue to estimate where that object will be. Objects also admit the ability
to disambiguate two blobs with velocity vectors as shown in Figure 6.13. As sheep
1 moves down past sheep 2 the blobifier will form the blobs in a different order.
This figure illustrates that it is not possible to simply feed the same blob center
positions to a filter or any other permanent data structure; it is important that
an intelligent mapping between blobs and objects occur. In order to update sheep
positions while obscured, calculate velocities, and associate a sheep with a single,
nonchanging set of values, blobs need to be associated with specific objects.

The task of associating blobs to objects is non-trivial. The process is broken
down into four stages executed in the following order: 1) associate visible blobs
to known objects, 2) map unassociated blobs to recently unobscured objects, 3)
estimate the positions of obscured objects, and 4) map unassociated blobs to new
objects.

1) Associate Visible Blobs to Known Objects

This step is straightforward. Since we use a high scan rate, objects move less
than a pixel from snapshot to snapshot. A pointer is kept to the blob a particular
object was associated with last time. If the blob's new position is consistent with
the last position and velocity estimate of the object, then the association is kept.
If there is no blob whose position is consistent with the object, then it is assumed
that the sheep has become obscured and the object is marked as such. Also, if
the object's new position is outside of the field (the sheep escaped the confined
area), then the object is marked as dead and removed from the list of objects.

2) Map Unassociated Blobs to Recently Unobscured Objects

Once blobs have been associated with objects, there might be some unasso-
ciated blobs left over. This can occur for one of two reasons: either a blob has
recently been obscured and has just move out from under the robot arm, or an
entirely new sheep has appeared on the table. A search is made through all the
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objects that have been marked as obscured to determine if one of those might
match the blob in question. This match is determined by using the estimated
positions and velocities of obscured objects. If the blobs current position is within
a predetermined percent of where the object was expected to be, an association
is established. A positive association may not be made if while the blob was ob-
scured it was manipulated back toward the center, or if it collided with another
sheep. The allowed percent is increased (effectively widening the search) until a
positive match is found. Our double pass filters allow for the velocity estimate
to track the object's new heading quickly, so even if it is the case that the ob-
ject has been turned around, the velocity estimate will soon (within two to three
snapshots, or about a tenth of a second) correctly reflect the object's true velocity.

3) Estimate Positions of Obscured Objects

When a sheep becomes obscured, it is necessary to estimate its position accord-
ing to its last measured position and velocity. This is done simply by multiplying
the amount of time the object has been obscured with its last estimated veloc-
ity. This is another reason why it is important to have very accurate and quickly
determinable velocities. The position estimate kept when obscured is used when
trying to reassociate a blob detected on the field. It is also used by the planner
to determine the next sheep to save. It is possible that an obscured sheep needs
to be reoriented so that it won't escape the field. If the estimated position of an
object is ever outside of the field, it is marked as dead and the sheep is removed
from the object list.

4) Map Unassociated Blobs to New Objects

By this last stage in object to blob association, if there are any unassociated
blobs, they are assumed to be new and are mapped to a new object. Hence, a
new object is added to the list, the position information is added, and the filtering
process begins. In our shepherding application, the "trackify" assumption is that
objects are placed only on the perimeter. The "blobify" algorithm allows new
objects to appear anywhere in the scene. For instance, a sheep entering the
field may slide under the robot arm and be obscured until it has already crossed
a portion of the field. While careful placement would avoid this difficulty, we
designed the blobify algorithm to handle such a scenario.

6.4.3 Filtering

Once blobs have been associated with objects, another operation is needed
before a final velocity is ready for the planner. It is necessary to filter the data.
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Figure 6.14 shows velocity data for a sheep standing perfectly still. With no
noise, the velocity would be a stable zero. Since the object is stationary, this
figure represents the sensor noise introduced by the camera and digitizer. The
camera noise represents a significant portion of the total noise. The Lego sheep
introduce plant noise since they do not move at constant speed; the exact quantity
however is difficult to capture. An examination of Figure 6.15 (this figure shows
the velocity of a sheep moving in one direction, a 180 degree rotation, followed by
velocity in the opposite direction) shows periodic noise patterns indicating that
the sheep are adding their own noise on top of the measurement noise produced
by the camera. Successive figures in this section represent combined plant and
sensor noise.

To reduce the effects of plant and measurement noise, an a - 0 filter was
used to incorporate new data into old [BSF88]. The sheep occasionally change
direction, even by as much as 180 degrees (when being manipulated back towards
the center), or less when deflecting off other objects. As stated, the planner needed
very consistent velocity estimates. The requirements of the filtered velocity were
that it be smooth and representative of the averaged true velocity and respond
quickly to changes in the object's motion. An a - 3 filter has two parameters that
can be set. These represent how much confidence should be extended to the data.
If the filter is set to have a high degree of confidence in the data, the filtered output
will very closely resemble the input data, and any change in direction will quickly
be reflected in the filtered output. However, if the plant noise is large, then the
filtered output will still be quite noisy. If the parameters are set reflecting little
confidence in the data, then the filtered output is smooth but responds slowly
to changes in direction. We were thus faced with a dilemma when choosing the
parameters. In fact, several experiments confirmed our suspicion that there would
be no appropriate choice of parameters for a single a - /3 filter.

To solve this problem, we ran the noisy input data through a double a - /3
filter with different parameters for each filter. The first filter's parameters (see
table 6.16) are set assuming small plant noise. This is so the filtered output
will quickly respond to changes in directions of the objects. The original data
appears in Figure 6.15. The output from the first filter appears in Figure 6.17 and
although it is still fairly noisy, it closely tracks changes in direction of the sheep. As
mentioned, the eventual output needed to be smooth for accurate prediction by the
planner. To achieve this, the output of the first filter was used as input to a second
filter. The second filter assumed a higher plant noise (for greater smoothing) and a
much lower measurement noise (the data had already been filtered so it shouldn't
be as noisy as the original data). Additionally, we subsampled the first filter data,
taking every third point, to produce an even smoother curve. The output of the
second filter appears in Figure 6.18. The output of the second filter fulfills the
requirements: it is quite smooth and responds quickly to changes in direction of
the sheep.
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To see how well the output of the second filter mimics the original input
data, as well as the intermediate stage, a graph overlaying the data presented
in Figures 6.15, 6.17, and 6.18 is presented in Figure 6.19. The velocity from
the second filter fulfills the two requirements of having a small delay in adjusting
velocities when there is a change in direction and of having a smooth profile.

To gauge the accuracy of the filtered velocity estimate, we ran several exper-
iments in which a sheep was introduced into the field and the filter was allowed
to establish a velocity estimate. A pseudo-planner asked for the sheep's velocity
and predicted the sheep's position n seconds into the future. The pseudo-planner
waited for the n seconds and asked for the position of the sheep. We recorded
the difference of the predicted position of the sheep with the actual position. We
performed this experiment with n taking on values of 1, 2, 4, 8, and 16. For
each n, we ran six experiments and took the mean of the absolute values of the
difference between the predicted and actual position. The graph in Figure 6.20
represents the results. The y axis is in pixels. The approximate velocity of the
sheep was .8 pixels per second. Remember, the diameter of the sheep is about
16 pixels. The graph indicates very accurate prediction and the accuracy is not
significantly affected by increasing time. This is true for two reasons: the plant
noise (the velocity) is periodic so when integrated over time is predictable, and
there is a large amount of error arising from sensor noise (the measurement of
the positions of the sheep). These experiments were run with a 20HZ scan rate;
16 seconds represents multiplying the estimated velocity by 320 to obtain the
predicted position. These results clearly indicate the estimate velocity from the
double filter is very accurate.

6.5 Manipulation

One of the most difficult aspects of real-time manipulation is that the robot
arm is extremely slow and unpredictable '. The program that controls the Puma
robotic arm runs on a Sparcstation using the RCCL robot control software. As we
previously described, this program is sent requests from the SGI where the vision
processing and planning occur. The task of the program running on the Sparc-
station is to move the arm to a specified (x, y) point with a given orientation 0.
It is not straightforward since the SGI specifies a target point in two-dimensional
image co-ordinates. The manipulation program must use a transformation matrix
to convert between the requested image coordinate specified by the GSI and the
robot's three-dimensional world coordinate frame.

'The arm does not arrive at the exact coordinate specified and sometimes takes the much
longer way (of two possible rotations sometimes the internal RCCL path finder chooses the
longer one to prevent getting too close to an end position) to get to a destination
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To simplify the problem, the robot is required to work in only two given z-
planes: the object plane where it can manipulate the sheep, and the elevation
plane where the arm can move freely without bumping the sheep. Due to the

specification of z-planes, the transformation requires a 2 x 3 matrix.

To create the transformation matrix, three sample points must be taken to
set up a correspondence between image and world points and mark the object

plane, and a fourth point is taken to specify the elevation plane. Once the sample
points have been taken and the transformation matrix is created, the operation
in equation (6.1) must be made to convert image points into world points.

T21 T22 T23  yw

In the initialization phase, the elements of the 2 x 3 matrix shown in equa-
tion (6.1) must be found. It is clear that that can be done by getting three world

points and their associated image points and solving the set of three equations
to find the three unknowns (three unknowns per row of the transformation ma-
trix). The object plane is specified by the user in the first image to world point
correspondent.

It is also simple to find the world co-ordinate orientation of the gripper given
the image co-ordinate orientation. A vector from the origin of the image can be
easily computed given an orientation (in radians). Then, using the transformation
matrix, the corresponding world vector can be found. With this information it is
possible to orient the manipulator in the world.

The final aspect of robot control is the speed of the arm. Fortunately, RCCL
provides a function to set the time it takes to get to a target point. Given the
current location of the arm and the destination point (in image co-ordinates), we
can use this function to find the travel time of the arm. Unfortunately though,
this is sometimes in error and an allowance for this possibility was required. The
planner also has access to the arm speed constant allowing it to estimate how long
a requested move will take.

6.6 Example Application Conclusions

The real-world shepherding application runs in our laboratory. The setup of

the field, robot arm, and sheep can be seen in Figure 6.21. The robot arm can keep
one sheep on the field indefinitely, indicating that it can track and manipulate.
It also performs well when two sheep are present, however mechanical difficulties
sometime interfere. If the two sheep collide and stick the robot doesn't need to
do anything for the sheep to remain in the field. If the two sheep stick and move
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together the manipulator we have designed for the end of the robot arm does
not allow it to turn the sheep back towards the center. Both of these events are
unlikely with two sheep on the field but increase as we place more sheep on the
field. The other difficulty with greater numbers of sheep is the relatively limited
extent the robot can reach. This caused the size of the field to be quite small.
The size of the field is approximately three feet by four feet, and each sheep is
nine inches long and three and half inches wide. We have been able to confine
four sheep on the field for a limited amount of time (about two saves each). The
most limiting factor is the speed of the robot arm.

We have used the basic shepherding platform to create graduate student class
projects. The implementation was robust enough to allow students to use it as a
base and work with additional interesting variations. One group, no helicopters,
was not allowed to have an overhead camera or to survey the field from any height
above several inches. This precluded the possibility of obtaining a global view of
the world. A second group, clouds, had to handle multiple clouds (objects resting
above the field that obscured the sheep) throughout the field. This made for
frequently obscured sheep and placed additional constraints upon quick acquisition
and accurate tracking of the objects. As a final variation, wolves, we used a
second robot arm to simulate a wolf entering the field. The original robot arm
was equipped with a laser gun and had to "kill" the encroaching wolf by aiming
at and hitting a sensor target placed on the second robot arm controlling the wolf.

We have described the implementation of shepherding, a real-world applica-
tion combining vision, manipulation, and planning. This application has been
successfully implemented in our hardware lab and can confine approximately four
sheep in a three foot by four foot field. This project was part of a larger project
of investigating the design issues of implementing support for parallel real-world
applications. The implementation has allowed us to address areas where simu-
lation was inadequate. However, simulation allows us to address situations the
real-world application does not. A better understanding of support and design
and principles for SPARTAS comes from a combination of both techniques.
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#define ephor-begin.proc(TASK, ID)\

long long ftimel,ftime2;\

int *cpu-.times, *cpu-index;\

int *sd times, *sd-index;\
int hltrt = hl...task[TASK] .run-technique;\

cpu-.times = hl-.task[TASK] .technique[hltrt] .cpu..times;\

cpu-index = & (h1.task[ETASK] .technique Ehltrt] . cpu-index);
sd-times = hl-task[TASKI .technique~hltrtl .sd-times;\

sd~index = &(hl-task[TASKI .technique[hltrtl sd-index);\

while(start-signal == 0); 1* delay so proc id stablizes */\

if (verbose) printf("%s id %d\n",hl-task[TASKI.name,ID);\
hl-task [TASK] .proc = FIRST-FREE-.PROCESSOR;\
if (sysmp(MPMUSTRUN, hl-task[TASK].proc) < 0)\

ephor~error("error: failed to assign processor);\

h1.task [TASK] .migrate =0;

setblockproccnt(ID,Q);\

schedctl (NDPRI , 0,NDPHIMAX) ;

cpw..on Ehl-.task[ETASK] .proc] = 0
while (1) {\
blockproc(ID);\
if (hl-.task[TASKI .pri-.add)\

schedctl(NDPRI ,0,NDPHIMAX+hl-task[TASK] .pri-.add);\
if (hl-task[TASKI .migrate) {\

if (sysmp(MPMUSTRUN, hltask[TASK] .proc) < O)\
ephor-.error("error: failed to assign processor);\

hl-.task [TASK] .migrate =0;

ftimel = *fine-timer;

Figure 6.6: C code for the ephor-begin-proc macro
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#define ephor-end.proc(TASK)\

hl-task [TASK] .technique[hltrtl .cpu-marked 1;

ftime2 = *fine-timer;\
(*cpu-index)++; \
(*sd-index)++ ;

cpu-.times[(*cpu-index)%3] = TICS2USECS((int) (ftime2-ftimel));\
sd-times [(*sd..index)%sdwindow] =\

TICS2USECS ((int) (ftime2-ftimel)) ;
cpu-on~hl..task[TASK].proc] =0;

Figure 6.7: C code for the ephor-end-proc macro

Figure 6.8: A covered Lego sheep. Figure 6.9: A sheep and cover.

Figure 6.10: The actual image (on the right) and its shadow array (on the left)
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1 2 3
Figure 6.11: The lines created by the quick circle method

Sampling rate blobify trackify

4 pixels 26 ms 18 ms

8 pixels 17 ms 8 ms

10 pixels 12 ms 4 ms

12 pixels 9 ms 3 ms

Figure 6.12: Comparing blobify to trackify
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Figure 6.13: A sample scene with two sheep and their velocity vectors.
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Figure 6.14: Velocity for a stationary sheep
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Figure 6.15: The actual measured velocity of the toy sheep where the x-axis is in
twentieths of a second and the y-axis is pixels per second.
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Plant noise filter 1 0.01
Measurement noise filter 1 0.1
Plant noise filter 2 0.05
Measurement noise filter 2 0.01

Figure 6.16: The parameters used in both of the a - / filters.
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Figure 6.17: The output of the first a - filter.
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Figure 6.18: The output of the second a - /3 filter.
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Figure 6.19: The measured, first filter, and second filter velocities.
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Figure 6.20: Error in predicting a sheep position.
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Figure 6.21: Shepherding setup
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7 Conclusions

Parallel applications face challenges when handling unexpected events such as a
context switch or a new environmental stimulus. Uncertainty makes programs
more difficult to design and causes large performance degradation if not handled
properly. Our approach to achieving high performance in the face of uncertain
events has been to widen the kernel-application interface allowing the two to
cooperate. We applied our approach to the design of synchronization primitives
on multiprogrammed multiprocessors and to allow parallel real-time applications
to adapt to a varying environment. Our expanded interface and cooperation
allowed the application code to be simpler and to perform better.

7.1 Contributions

Part of designing a successful SPARTA involves partitioning the responsibil-
ities to facilitate clean interaction between the application and the system. In
Chapter 2 we provided

e an application independent structure and methodology for incorporating
useful mechanisms into the runtime environment.

In designing Ephor we focused on mechanisms targeted at real-world environ-
ments. One observation made about the real world is that it can be modeled by
continuous functions and often does not change dramatically over short periods of
time (e.g.., relatively smooth number of cars into and out of a city block). Based
on this, in Chapter 4 we presented

* a set of scheduling policies designed for SPARTA environments.

The underlying goal of these policies was to be adaptive and respond to a
changing environment. This is a key element to designing well-performing SPAR-
TAs. This observation led us, in Chapter 5, to designing a validating the usefulness
of
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* a dynamic technique selection mechanism

that allows the runtime (Ephor) to choose dynamically from a set of possible
techniques to executing a particular task. In the same vein we also described

* a suite of mechanisms suitable for SPARTAs: dynamic parallel process con-
trol, de-scheduling of all tasks linked to a goal, access functions for sharing
information, optional partitioning of soft and hard tasks, overdemand de-
tection and recovery, and early termination of tasks.

Given this effective base and our experience with the real-world shepherding
application (Chapter 6), in Chapter 2 we presented

9 a set recommendations to SPARTA programmers.

Uncertainty can arise both from the environment and from the internal system
state. Our dynamic technique selection allowed Ephor to adapt to varying internal
state by choosing the appropriate mechanism when a task needed to execute. An-
other aspect to internal state is the multiprogramming level of the system, which
can have a severe effect on the performance of parallel applications employing
synchronization. To address these issues, in Chapter 3 we described techniques
for:

• a preemption-safe ticket lock and scheduler-conscious queue lock, both of
which provide FIFO servicing of requests and scale well to large machines

" a fair, scalable, scheduler-conscious reader-writer lock

" a scheduler-conscious barrier for small machines (in which a centralized data
structure does not suffer from undue contention, and in which processes can
migrate between processors)

* a scheduler-conscious barrier for large machines that are partitioned among
applications, and on which processes migrate only when repartitioning.

Throughout our work, the emphasis has been on using the widened kernel -
application interface to facilitate the cooperation between the application and the
kernel to allow for easier implementation of better performing mechanisms.
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7.2 Future Directions

Further extensions to the kernel-user interface may allow even greater per-
formance gains to be achieved. Several groups have examined exporting access
to the hardware and kernel responsibility. The SPIN project [BSP+95] allows
the kernel to run user defined function providing protection through Modula 3,
a strictly typed language. Wahbe et al. [WLAG93] use sandboxing, a technique
allowing fault isolation within a single address space. The Exokernel [EKJ95]
exposes resources to the user and provides protection via hardware mechanisms.
These projects all recognize the fact the in the past operating systems have hid
potentially critical implementation decisions from the user. We believe the ability
to expose these decisions to the user and allow an alternative implementation will
be crucial to achieving high performance in current and future scalable machines.
However, we also feel it is vital to not force the user to perform additional work.
Instead it should be an option should they so chose, with the underlying runtime
by default acting on the application's behalf.

There are several extensions to current operating systems we believe may be
valuable. Such extensions might include allowing the kernel to run user-supplied
functions in response to particular kernel events, or choosing the partition size
based on the application's characteristics. We believe that as large-scale multi-
processors become more common they will inevitably be multiprogrammed, and
the importance of exchanging information across the kernel-user boundary will
increase.

Clusters of SMPs and scalable shared memory multiprocessors will be impor-
tant architectures in the near and medium term future. An interesting question
is "how do we schedule applications on these machines?" For example, if a bar-
rier application has 16 processes running on 16 processors, removing 1 processor
may have the same effect as removing 8, thus it may be much better (for over-
all performance) to give the other 7 to another application. Also in a clustered
environment the choice of those 8 may be important. Here again, we believe if
the OS scheduler has information about the application, better decisions can be
made. Another interesting issue for the operating system is whether the scheduler
should itself be distributed. This would allow greater tolerance to single cluster
failure but has added complexity in overall scheduler design.

Some machines do not provide the fetch-and_4 operations needed by many
synchronization algorithms. Thus synchronization mechanisms that rely on those
will have difficulty, yet synchronization is crucially important to many parallel
applications. Those instructions could be emulated using simpler atomic primi-
tives, but whether the additional overhead is justified remains an open question.
Perhaps a two-tiered mechanism similar to the one we used in our scalable barrier
algorithms will need to be employed.
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In Chapter 3 we discussed ticket locks and concluded that designing a scheduler-
conscious version was not possible with simple sharing of information. However,
if the kernel knew more about the synchronization mechanisms, the lock would be
implementable. This hints at the potential for allowing the kernel to run user func-
tions to achieve better performance. There are many interesting and challenging
issues once such activity is considered.

Ephor uses program structure to dynamically select from a set of possible
implementations. This idea opens up a whole set of possibilities. For example, if
a program could specify ahead of time its resource allocation needs, the operating
system could pre-allocate the requisite resources. In real-time systems this is
sometimes done to avoid the variability of process creation and other similar
functions. However, we believe there is potential for it to be used in other realms
as well.

We presented many different useful mechanisms in Ephor, but only explored a
few of their combinations. Some of the methods we employed for resolving conflicts
between competing goals were very simple. A more in-depth understanding of
the application, or again the ability to allow Ephor to run user-level functions,
would perhaps provide improved performance when many tasks are competing for
interelated resources.

We believe there is tremendous potential to be gained by extending and im-
proving the exchange of information between the application layer and the system
layer. There are many issues involved including protection, security, and reliability
in widening this interface. This thesis demonstrated the benefits to be gained in
a few specific arenas and we would like to see this work continue and be expanded
into other related domains.
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